Category: Natural Landscapes

The dry garden - created over the remains of an old driveway
January 24th, 2019 by Mark Laurence

The emergence of the idea of resilient planting is a response to a number of different pressures which all have one underlying cause – climate change. Whatever the cause – and I’ll get on to that later – I see it as the most exciting change to the way we design our gardens and landscapes.

Last year we had one of the hottest summers ever recorded and it serves to heighten awareness of the vulnerability of some plants and garden styles to the increasingly erratic climate we are dealing with in the UK. We seem to swing from one extreme to the other, and this is only likely to get worse. I’ve witnessed a number of stressed plants in my own garden but feel relieved that most have thrived throughout the heat, without any watering on my part. this is down to soil, drainage, micro-climate and above all, plant choice.

Ballota pseudodictamus, a Mediterranean sub-shrub with grey, felted leaves, loved by bees.

Ballota pseudodictamnus, a Mediterranean sub-shrub with grey, felted leaves, loved by bees.

We garden on an alluvial coastal plain, and are fortunate to have a very free-draining soil overlying a clay substrate.  It gives us fertile soil, great drainage and a moist sub-strata within the reach of most plants (many areas around us are of much heavier clay).  A large section of our front area used to be a paddock with a rubble driveway and this now forms the basis of much of my dry garden.  Some rubble was removed and topsoil added, but a lot of areas are still rubble-strewn, not unlike some rocky soils.  The down side of all this is super-fertility and a soil filled with weed seeds, bindweed and couch.  To be honest, I’d have preferred a poorer soil.

When thinking of resilient planting, we have to match our plant type to the environment; we also have to think, long-term, of how our environment might change in the coming years.  This is not so important when dealing with short-lived plants such as herbs, sub-shrubs and perennials, but is super important when dealing with long-term structures, especially trees. This is doubly true when we look at the potentially disastrous effects of imported pests and diseases that we are having to content with.  Climate change, especially milder winters, mean that exotic pests are happily making a home here and wreaking an unintentional devastation to trees such as our native ash and even oak.

Phlomis russeliana, after flowering. The stem leaves have since dropped, leaving an brown, architectural structure.

Phlomis russeliana, after flowering. The stem leaves have since dropped, leaving a brown, architectural structure.

No-one can say exactly which way our climate will go as the world hots up; we know we (in the UK) will always be maritime, because that can’t change, but as the Jet stream (wind currents) varies and the Gulf stream (water currents) weakens, we don’t really know what kind of climate we’ll end up with.  We can only plan for extremes, and select our planting choices with that in mind.  In this respect, the “new perennial” or “naturalistic” planting isn’t necessarily going to be the toughest choice as they come from a continental climate which generally have hot summers and very cold winters.  Prairie plants tend to get out-competed here with our mild winters and grasses and forbs that can grow all year round, given mild conditions. The aforementioned fertility (at least in my garden’s case) also doesn’t help as wildflower meadows/prairies tend to have poor soil which helps keep the grasses from assuming dominance. During the heat-stressed weeks, I noticed that where I have perennials like Echinacea and Veronicastrum (in moister areas than the dry garden), they suffered from the lack of water. which resulted in the Veronacastrum flower spikes looking stunted.  for more moisture-demanding planting, sub-surface irrigation using harvested rainwater might become a necessity.

To my mind though, if you need irrigation you’re working with the wrong plant-types, trying to grow plants that can’t naturally cope with the conditions that predominate.  Save your water for the newly planted and the vegetable plot and for this, consider rainwater harvesting, rather than mains.  When selecting plants, see what grows well, both of native and non-native origins and build adaptive micro-ecologies.  Our climate is changing faster than the current ecosystems and ecologies can cope with and we need to do whatever we can to build new planting that is of maximum benefit to local wildlife, as well as ourselves.

It’s an exciting time to be a gardener, for there is no place now for the self-indulgence and nature-control-freakishness of the past. What there is a the possibility of co-creating new ecologies that adapt to changes, halt decline and make our local wildlife vibrant and healthy.

Along the way, we can create the most stunning of gardens!

Posted in Adaptive Planting, Biophilia, Climate Change, Dry Garden, Ecosystem Services, Environment, Garden Design, landscapes, My Garden, Natural Landscapes, Planting Design, Regenerative Planting, Sustainability Tagged with: , , , , , , ,

A natural water garden. The stream has built in biofilters to cleanse the water
January 21st, 2019 by Mark Laurence

Water in its purest form is the most simple of compounds – two atoms of hydrogen to one of oxygen – yet it is possibly one of the least understood “elements” on this planet. Strange, when it covers 70% of the globe and our bodies are 70% water. We take it for granted now, when once we considered it sacred. There is little appreciation of water; we no longer walk to the well, there is no effort involved and seemingly no end to its availability – except there is, but that’s not what this article is about.

I want to try and inspire a deeper appreciation of this element (not used to describe its chemical properties, for it is, as stated above, a compound), we need to reconnect with it as the source of life and spirit. I’ve worked with water for many years, building ponds and experimenting with biofilters and natural cleansing methods. I work intuitively, not scientifically and am the first to admit to large gaps in my knowledge, with a path of learning ahead of me that still looks impossibly steep! Yet the more you explore the qualities of water, the more you get drawn in: the secret of life itself lies in there. To that end, I have recently gone back to building new water features and greywater systems myself, for there is no substitution for hands-on experience and observation.

That water has properties “beyond the obvious” is a no-brainer – you can observe many of these for yourself. Understanding what exactly they are, how they are generated or destroyed, and just how far they go, is another matter altogether. You cannot investigate water for long without coming across the name of “Viktor Schauberger” an Austrian forester who investigated/discovered/rediscovered the more mystical properties of water during the first half of the 20th centaury.

spiral movements in water
spiral motion in water

So where do we begin, on a journey to a greater understanding of water? That’s difficult, but let’s start with what we can see: the way that water moves. Our mathematical minds tell us that the quickest way from A to B is in a straight line, but water doesn’t move like that, even when it could (in fact, nothing in nature does). Water moves in a never-ending series of spirals and vortices. Why? because that way water is energised; it generates or attracts minute electrical charges and controls it’s temperature, moving as close to the optimum of 4° C, when it is at its most dense (it expands either side of this point). This vortical movement causes the winding motion that we see in rivers once they reach the valley bottoms and plains, and the eddies and swirls you can plainly see in any moving body of water.

Vortical movement is centripetal, rather than centrifugal. It uses the force of implosion, rather than explosion. This form of movement gathers force and energy, rather than dissipating it outwards. Straight away this seems odd to us, for we are used to a science and technology based solely on the force of the centrifugal, explosive, dissipative; which inevitably must lead to loss and entropy. That Nature uses a different form of energy seems unreasonable to the scientific mind. It has been said that there is endless energy that can be captured from the movement of water (not from hydro-electric use) and if we could efficiently split water into oxygen and hydrogen by electrolysis then we could capture energy with water as the only emissions; but I do know that the way that water moves is strongly bound up with its health, and so the health of all life, and that is an area that interests me greatly.

Schauberger states that water tries to maintain itself at its greatest density of 4°C; then it has greatest energy and the water is at its most “enlivened” state. The problem with this is that it is difficult to measure or assess by conventional scientific means; this does not mean, however, that it is cannot be true. What we can say, however, is that water in its most natural state is the most healthy, and so at its best for both ourselves and the environment.

vortex in water
Water naturally moves in vortical spirals

Water may also carries memory, which accounts for whether it is in an “enlivened” state or not. In homeopathy, a benign substance is diluted to the point where it is chemically nonexistent, but potentially very active, and this is based upon the latent memory of water. This is also true of pollutants, whose influence can still be there even once the source has been removed. Fortunately, water will self-heal if only allowed to move in its natural rhythms. The design of Flowforms is one response to this, allowing water to regain it’s own energizing movement, and other devices, such as spiralled copper coils and units containing pre-energised water are all said to effect and energise water that flows past them. I have no particular view about this, but then, I haven’t done any tests on such devises and of course, knowing how to measure potential results is always the problem. In pond ecosystems, health can be largely determined through observation and I prefer this approach, where the results of alteration can be seen in biological response.

There are a number of issues I have experimented with at times: enhancing the natural rhythms of water movement, enhancing biological activity in breaking down pollutants, and incorporating ornamental pond systems with purification of household greywater discharge, rainwater harvesting and garden irrigation. All these things require biological understanding and observation but to my mind, they most of all require an open mind and a sense of respect, an acknowledgement that water is in fact precious and scared.

I live in an area surrounded by intensive agriculture, which extracts groundwater to irrigate vast monocultures of salad crops. This is the worst kind of abuse of water, treating it as an inexhaustible utility, to pollute with herbicides, insecticides and fertiliser runoff. Mankind’s ignorance and lack of respect for the most fundamental and vital element on this planet can only lead to exhaustion, depletion and pollution on such a scale that the very existence of all life is put under threat. We need to look for the highest potential of life, not the lowest common denominator. Time to get critical in our thinking, and get connected back to deeper understandings.

The most exciting thing is that understanding water truly can reveal the secrets of life. Through appreciating this simplest, yet most profound element, I believe that humankind can come to a greater appreciation of himself, and his place in the Universe.

All for a cupful of water.


First published in 2007

Posted in Natural Landscapes, rain gardens, Water Gardens Tagged with: , , , , ,

A natural Xeriscape
March 23rd, 2018 by Mark Laurence

A problem, or an opportunity for a new landscape paradigm?

 

I was recently working on a tree project in Abu Dhabi when I came across a derelict site which intrigued me with it’s range of exotic self-seeded, non-native plants.  The site was next to the Corniche and sandwiched between the Formal Park, my hotel and Capital Gardens.  It struck me initially as the perfect basis of a xeriscape, as all the plants (mostly trees) were thriving without irrigation.  On closer inspection and identification of the species involved, things got more complex and raised a lot of potentially conflicting thoughts and issues.

A natural Xeriscape

A natural Xeriscape

The site was clearly awaiting redevelopment and the plant invasion was opportunistic.  Nothing that I could identify was native, yet all seemed happy there.  When you see the list, you might understand why.  Amongst the plastic and litter I identified:

  • Prosopis juliflora
  • Ficus benghalensis
  • Eucalyptus glaucescens
  • Conocarpus lancifolius
  • Washingtonia robusta

Of those plants, the P. juliflora was the most robust and when you look at its reputation, that is of no surprise. It was of landscape scale, lush and greener than anything in the adjacent parks.  It’s form, leaf, flowers and seeds are attractive from a landscape perspective.  Yet this is undoubtedly the most controversial plant on this list – some would say alarming.  A Native of arid zones in central and South America, this was, like so many others, introduced into the UAE in the 70’s as a forestry plant.  Lauded as something of a super-crop tree, it is tenacious, vigorous, provids fuelwood and stock-feed in the form of abundant seeds.  The latter, it turned out, were a problem in that they are spread by cattle and are extremely aggressive.  Plants also regenerate rapidly from the roots when cut back and they reputedly produce biochemical inhibitors to suppress competition (allelopathy).  With no natural competitors in the UAE and roots that can descend 50m in search of water, they out-compete native flora, even their cousin, Prosopis cineraria (ghaf tree).

Prosopis juliflora flowers

Prosopis juliflora flowers

P. juliflora has a low, mounding habit, attractive from a landscape point of view.

P. juliflora has a low, mounding habit, attractive from a landscape point of view.

Also on the site were a number of Banyan trees, Ficus benghalensis, which seemed to be growing happily. Another tough survivor, it should be borne in mind that the water table here is likely only a metre or so below ground, although it will have a high saline content.

Ficus benghalensis

Ficus benghalensis

Then there was Eucalyptus glaucescens, another forestry/amenity introduction of the 70’s, also known and now generally avoided for its aggressive roots, yet here looking beautiful with its grey, lanceolate foliage.  This was the tallest tree on site.

Eucalyptus glaucescens, showing adult foliage

Eucalyptus glaucescens, showing adult foliage

Of course, there was the ubiquitous Conocarpus lancifolius, widely planted still yet also recognised and a danger to any nearby drains, and on it’s way out in popular use.  Except it does make such a good tall hedge, and it has a much nearer native origin, coming from Somalia, Djibouti and Yemen.  I’m not sure that the UAE landscape industry is ready to ditch it just yet.

Conocarpus lancifolius

Conocarpus lancifolius

There was even a palm, Washingtonia robusta, self-seeded around the place.  Much of it was to be found growing underneath the canopy of the P. juliflora, so that at least is not put off by any allelopathic biochemicals from the Prosopis.

Washingtonia robusta

Washingtonia robusta

There were also a few unidentified things, this shrub, for example.  A legume of some kind, if anyone can ID it, please let me know.

Unknown Legume

Unknown Legume

Rose-winged Parakeet

Rose-winged Parakeet

Inhabiting, or at least visiting the site, was a Rose-winged Parakeet.  Another exotic invasive with beautiful form but aggressive tendencies; it seemed appropriate to the moment, somehow.

 

What does this mean for future landscapes and ecology?

 

From a conventional ecology point of view, these plants are all threats, and the threats probably outweigh their usefulness.  So why am I even talking about this?  Clearly, the move towards more naturalistic landscapes draws heavily on native species and would shun all of these species.

Except we have climate change.

Climate change is the elephant in the room, when it comes to ecology, in fact when it comes to sustainability generally and a livable planet overall.  That we have already moved beyond vital tipping points is highly likely; that climate zones are moving away from the equator at a rate too fast for nature to adapt is a fact.  Flora and even some fauna just can’t move regions that quickly.  They will adapt, eventually; but those that are rare, specialist and struggle with change, will die.  The tougher generalists will adapt and survive.  Nature will build a new ecology to reflect the new reality, and it doesn’t mind if it takes a few thousand years to do so.  Only we humans mind and so, if we are to survive, we must adapt our environments to fit the new reality.  It is a sad fact that many cherished plants will eventually die out or move zones.  In the UK, I dread losing our native oaks (I view these as our ghaf tree equivalent), yet we may get Mediterranean species to replace them, such as holm and cork oak.

If you are already positioned in the arid equatorial zones then you have precious few plants that will form your new ecologies and landscapes.  Perhaps the plants I have described above will be UAE naturalized-natives in 100 years’ time and the ghaf and sidr may be gone, or diminished, or moved north.  I hope not, but before we spend vast fortunes on eradication and control of non-natives, we should look to the future.  These aggressive invaders may just form the landscape of our children; I know I’d rather live with a landscape, than none at all.  If there is no landscape, there is no life.  They may, in fact, be here to save us.

Once we grasp this fact, we can look at building new landscapes to suit our changing environments. I’ve written about this before and you can read the articles listed below.  We must be vastly more holistic in our thinking in order to do this and broaden our horizons to understand the new future.  Technology will help us to monitor, collect data and produce working strategies.  Robotics and drones will help manage and control plant communities.  Alongside that, we need a vastly better understanding of soils, microflora and fauna, for the bit of nature that we see is just, literally, the tip of the iceberg.  The selection of tree and shrub species for adaptation is easy, we get this wrong when we don’t deal in whole context thinking eg. only thinking of forestry or ornamental benefits.

The challenge ahead is huge but in a weird way, exciting; it will challenge the human race to grow.  There’s a whole new science to develop and we’d best get on with it.

 

Other articles by ML that relate to this topic:

 

http://www.marklaurence.com/wp/trans-migrational-landscapes-a-survival-strategy-for-the-world/

http://www.marklaurence.com/wp/why-we-can-and-must-create-new-adaptive-ecologies/

http://www.marklaurence.com/wp/trees-climate-change-our-landscapes/

 

 

Posted in Arboriculture, Climate Change, Dubai, UAE, Ecosystem Services, Environment, landscapes, Middle-East, Natural Landscapes, Regenerative Planting, Sustainability, Trees Tagged with: , , , , , , , , , , , , , ,

July 10th, 2016 by Mark Laurence

This review first appeared in Thinking Gardens in February 2016.


This book represents a new wave of thinking about “natural” planting that has been emerging in recent years; actually it has been developing for the last thirty or more years but like all new things, they tend to follow an exponential growth curve. I’d say that right now we’re near the base of the steep upward bit with this one. Left unchecked, exponential growth tends to end in collapse but this idea deserves to stay the course. To do that it has to translate from a style into a design language and that’s what this book is really about.

This is a very US-centric book, unsurprising since Thomas Rainer is from Alabama and Claudia West, though of East German origin, lives in the US. I would have liked her influence to have given the book a more European feel; it would have been richer for it and more globally relevant.

The book has already been reviewed on TG by James Golden but although I’ve read this I’m not referring to it, save for one point. Needless to say, that review is also very US-centric; my purpose is to give a more UK/European viewpoint.

The thinking in this book is very design-led, in which the authors refer to landscape archetypes, which I think is very useful. However, they only select three – grasslands, wood and shrubland and forest. Given the vastness and variety of American climate types (which has just about everything), I’m surprised they didn’t mention desert landscapes, arid-mountainous or Mediterranean (as in Californian coastal regions); I suspect they have simply not worked with these climates, yet to omit them from a listing of archetypes is limiting. It is clear too, that their interest lies mostly in the grassland or prairie archetype.

Desert Archetype

There are many archetypes other than the three mentioned in this book. Desert near Dubai, UAE.

Referring back to the JG review, he wanted to add another archetype, Edges. I would argue that the wood and shrubland archetype is an edge, or rather a transition. Only in farmer’s fields do we have an edge as such. I would think of these archetypes as parts of a sine wave, one transitioning into another as climate and topography dictate. This sine wave also rolls around the globe over time, one archetype superseding another in any given place. Remember that the Sahara desert was woodland just 10,000 years ago, when we emerged from the last ice-age. This fits with the theory that there is no such thing as an ecological climax.

Another interesting thing to come out of this book is the idea of “designed plant communities”. You could say that any grouping of plants together is a designed community but the context they use of grouping plants by habitat-type rather than just their visual look is refreshing. This makes good sense, provided that such a designed grouping is appropriate within its wider environmental context. Taken to its logical extreme, however, you end up with native plants only.

What may be harder to work out is how much of this philosophy fits into a garden. Even the largest garden can’t fit in a whole wood, let alone a prairie, so of course, we must work by inference. This aspect of things is not really discussed in the book and most of the pictures are of large gardens in amazing settings; domains of the lucky few who we landscape designers occasionally get to work for. Yet for the majority of small garden owners, instruction for the adaptation of these principles is missing.

Millenium Park, chicago

The Lurie Garden, Millennium Park, Chicago by Piet Oudolf exemplifies modern Naturalistic planting. This is large ribbons or drifts of plants rather than the species intermingling favoured in this book

Millennium Park, Chichgo

The same garden in November; form is held in the stems and shapes of the seedheads but use of some woody plants might add more winter form?

I feel that the book only really looks at one archetype, that of New Perennial/Prairie style gardens and there is a big focus on this at the moment. I might compare this book with Oudolf & Kingsburys “Planting, a New Perspective”. That book, whilst not getting down to the archetypal design level, is more European in focus, so possibly a good companion read. Yet it too, mostly deals with perennial-based planting, as you would expect from these gents. The work of Nigel Dunnett and James Hitchmough comes to mind too. The fast-changing essence of many of the plant species used means that these perennial plantings are subject to rapid change, even degradation, over time as some of the most desirable and favourite species are so short-lived (Achillea and Echinacea for example).

I think the Wood and Shrubland archetype is the most likely to resonate with those seeking to create a garden, yet the ones of great importance to me, in a European and specifically coastal Southern England context, is that of the unmentioned Mediterranean or Arid-Mountainous archetypes. Whilst some areas of the Mediterranean clearly fit the Wood & Shrubland archetype (ie broadleaf and evergreen woodlands and Maquis), others such as Garigue, Salt Marshes and Rocky Shorelines, do not. I think this range and essence adds up to its own unique archetype. Arid-Mountainous too is quite distinct (although again with areas that fall into the realm of other archetypes), yet gives us wonderful, tough plants like Perovskia. The Dutch biologist Brian Kabbes has done much to inspire and educate us with his exploration of plants in Kyrgyzstan.

Perovskia arbrotanoides

Perovskia arbrotanoides growing wild in the mountains of Kyrgyzstan. Photo by Brian Kabbes

 

To me, one of the biggest drivers in creating naturalistic planting communities has always been about resilience. To my mind, planting should survive without irrigation, so low water-use plants are attractive. I can’t think of a single garden in the UK that couldn’t survive without irrigation, the desire to use pop-up sprinklers is ridiculous and surely industry-driven. Climate is changing now beyond speeds that Nature can shift plants and ecologies around the globe, so it is something we humans must do if we want a future landscape of any description (oh, and for our own survival). So we have to transmigrate landscapes from one continent to another to keep pace; yes, with all the risks that entails when introducing new species (and it would not be just plants we’d have to relocate). So learning about plant communities and how to build them is a vital skill which this book begins to explore, yet could have gone much further in instructing us on.

Mediterranean Archetype

This coastal garden I designed in Southern UK loosely mimics the Mediterranean archetype, and uses a full range of grasses, perennials, sub-shrubs, herbs, shrubs and trees.

 

In the European context then, archetypes other than grassland/prairie might be more useful and translatable into a garden context. That this book has not covered these is not really surprising but it is a mistake to think that the new language of resilient/natural/sustainable landscapes is dominated by perennials and grasses. This aspect is possibly a trend within the underlying drive for a natural interpretation.

A European version of this book is needed, which could perhaps take it to the next level of design language development. In this respect, inspiration can be drawn from another book, “A Pattern Language” by Christopher Alexander, which although about architecture and space, is also about soul, spirit, context and community, realised through the use of a language of patterns. In a very real way, “Planting in a Post-Wild World” attempts to create an archetype-based design language and is a valuable contribution to that. We just need the language to be global, or to see this book as a regionalised attempt to cross boundaries and develop new thinking.

This is an important book and I recommend it; for all its limitations it shows the way to develop landscapes that are truly new and profound.

Posted in Book Review, Design, Environment, landscapes, Natural Landscapes, Regenerative Planting Tagged with: , , , , , , , ,