Category: Design

The self-seeded garden
May 14th, 2020 by Mark Laurence

About 60% of my garden planting consists of self-seeded plants, which might seem surprising. I’m particularly focusing here on my dry garden but the same applies elsewhere. So how do you keep an acceptable aesthetic when plants put themselves here or there, without consultation?

I find that a different attitude to that of the “traditional” gardener is useful, if not essential. I like the dynamic and surprise of the shifting combinations and patterns that occur. Very few of these plants are annuals, most are short-lived perennials, with some grasses, herbs and shrubs. With a few exceptions, these are plants I have introduced to the site over the years and which have found their “happy”.

Salvia nemorosa, Carex petrei & Crambe maritima

Walking around this morning, I made this list (in no particular order):

  • Aquilegia vulgaris
  • Crambe maritima
  • Fragaria fresca – alpine strawberry
  • Geranium sanguineum
  • Salvia nemorosa
  • Euphorbia characas – various forms
  • Euphorbia myrsinites
  • Foeniculum vulgare purpureum – purple fennel
  • Pentaglottis sempervirens – green alkanet
  • Cynara cardunculus – cardoon
  • Eupatorium cannibum
  • Stipa tenuissima
  • Festuca glauca
  • Carex petrei
  • Verbascum olympicum
  • Galactites tomentosa – annual
  • Sisyrinchium striatum
  • Geum rivale
  • Lavandula (hidcote or similar)
  • Rosmarinus officinalis (Salvia rosmarinus)
  • Acanthus spinosus
  • Phlomis russeliana
  • Melissa officinalis – lemon balm
  • Valeriana officinalis – common valerian
  • Verbina bonariensis
Galactites tormentosa is an attractive annual. I pull it out as soon as it’s finished flowering

There are others, but these are the usual suspects. I have a range of about 15 shrubs and sub-shrubs that form a more static framework and those listed seed themselves around and between at will. I have to be ruthless and remove plants from where they are not wanted, and that’s always hard (they often end up in my nursery). And of course, there are many other self-seeders which we would traditionally call weeds: veronica, greater celandine, field forget-me-not, buttercups etc. They all have their own beauty and I could never manage to eradicate them, even if I was of a mind to, which I’m not (bindweed is another matter).

Foeniculum vulgare Purpureum, purple fennel

So form structure with your shrubs, herbs and other prime perennials, and let the remainder shift around; they’re not annuals (apart from the Galactites), so the scene doesn’t change radically from year to year, but over a slightly longer cycle. This works well for a mixed or herbaceous border, but is especially well suited to a dry, gravel garden style, where there are few or no border edges to maintain.

Some plants can be overwhelming and a few invasive, so best avoid those. I now severely limit the amount of Phlomis russeliana I have in my borders; stunning though it is (the winter seedheads are wonderful), it is a thug and will swamp out lesser plants and it produces a copious amount of seedlings.

Crambe maritima, seakale in front of more structural Artemisia arbrotanum. Seakale is also edible, try the flower florets raw or cooked like purple sprouting broccoli, but leave some to flower for the intoxicating honey scent!

Gardening like this is more of a co-creation; you are working with nature and not entirely in control. There are many benefits to this, not least the surprise of an unexpected combination, or the sudden appearance of plants you never knew set seed. This is a great example of adaptive planting, where plants are fully attuned to the climate and local conditions. Give them a chance and see what happens!

Posted in Adaptive Planting, Design, Dry Garden, Edible Planting, Garden Design, landscapes, Natural Landscapes, Planting Design, Uncategorized Tagged with: , , , , , , , ,

February 2nd, 2020 by Mark Laurence

Gravel gardens have been around a long time yet with a few well-known exceptions (Denmans, Beth Chatto and more recently, Olivier Filippi), never really make it into the mainstream of garden design. I suspect that for some designers, there is insufficient structure to satisfy, yet that is actually one of the main benefits. This makes them low-impact, from a carbon perspective, and naturally adaptive, with the kind of planting they use.

I have been designing such gardens for the past twenty plus years, and a part of my own garden is gravel, on the area of an old driveway; it’s the part I enjoy the most. Unlike perennial borders, there is structure all year round and I often wander around in the depths of winter, enjoying the shapes and forms, or the scent of rosemary (sorry to say, now officially Salvia). It’s like you’ve brought a little bit of the Mediterranean into the garden. Plants self-seed around and it’s always a bit different every year. It’s a style also eminently suitable for the arid regions of the Middle-East, whether xeriscaped, or not.

Not everywhere is suitable for a gravel garden and the obvious criteria of sun exposure and poor(ish), free-draining soil are a must. Whilst drainage and soil structure can be altered, aspect cannot. The other factor, frost/cold exposure is actually not such a barrier, although it will limit the plant choice a bit.

A part of the design of the gravel garden described below

Some years ago I was tasked with turning an old farmyard on the South coast of England into such a garden. The compacted rubble base was on average 50cm deep, so we loosened and/or removed about 400 tons and replaced a similar amount of topsoil into slightly contoured mounds. As it was a farm, the soil was already available stacked on site and there was somewhere to remove the rubble to. We then rotovated 50cm of gravel into the mounded soil to improve drainage and planted with a range of “Mediterranean” plants. Most were from this region, with some Australian/New Zealand species, most notably Phormium (which I probably wouldn’t use today). We also built a stream and water feature, using 30 tons of boulders (glacial, so not strictly true to theme).

Adding 400 tons of soil
Rotovating in a thick layer of gravel

If I were doing this today, I’d leave even more of the rubble in place and blind the soil in over it. Over time I have come to realise that such conditions are an advantage, and expected by many Mediterranean plants.

Placing boulders and a stream+pond

We used a drip irrigation system for the first year of establishment, which was then switched off in the second year. A 50mm deep dressing of 20mm diameter marine shingle covered everything, including the paths, which were left from the original, compacted sub-base.

Planting
After One year
After Two years
After Four years

I tracked this garden for a few years until the property changed hands and learnt some valuable lessons (as you always do), such as don’t put too many larger growing shrubs in, as the openness of the spatial structure becomes compromised. Whilst they are good at establishing initial structure, be prepared to remove some of them as the garden matures. Some, like the Cotinus and Tamarix, were meant to be coppiced every few years, but didn’t have this done. Some perennials work better than others and low mounding shrubs are what make the predominant visual structure of the site.

This last two pictures, plus the header, are a part of my own gravel garden, created over an old driveway, where I constantly experiment with new plants and slowly expand it all.

My gravel garden. Mounded foliage dominates the structural form
Mark Laurence's gravel garden
Mark Laurence’s gravel garden

Gravel gardening has much to offer and is an appropriate approach for our time, being of low carbon footprint and using plants that are adaptive and generally tough. Have a go, or get me to help…!

Posted in Adaptive Planting, Biophilia, Climate Change, Design, Dry Garden, Environment, Garden Design, Landscape Futurism, landscapes, Middle-East, My Garden, Natural Landscapes, Planting Design, Sustainability Tagged with: , , , , , , , ,

Trees add height and microclimate
December 9th, 2019 by Mark Laurence

Landscapes are all about creating micro-climate, or would be, if designed for that goal. Why is this important and what do I mean?

Almost all life is contained in a thin crust of soil, a wedge of atmospheric gases, and water. Plants are the principal medium that interacts with and regulates all three. Absolutely nothing else does this as well, or at all; think about it.

The way we organise our plants in our urban landscape will determine how well this interaction occurs, how successful it is. Yet I have never heard of a single project that has been developed with this understanding and this goal in mind. With climate change, we urgently need to re-think the way we design our landscapes, and why we design them. Whilst all the human-centric design reasons will always hold true, we need to layer into our thinking this new understanding of how plants interact. To build new ecologies, new ecosystems, we have to design for plants to actually function, rather than just look nice. For when they do this, our environment literally comes alive. More importantly, they might just, if done on sufficient scale, save us from ourselves.

When I use the word treescapes, I don’t just mean trees and grass; we’ve had that for years in the form of parks, and in their traditional form, they’ve done little for us. No, our designs need to build up layers of living material – biomass, for with biomass comes moisture entrapment, shade, food for insects, etc. Think of it in terms of height and depth of microclimate. How much depth is there in a stretch of irrigated grass, maybe 50mm above ground, 200mm below? No species variation, so what we have is little more than a green desert, albeit one that can hold bit a of moisture.

Trees in paved streets are also less able to generate micro-climate, but they are a bit of an exception, as they provide shade for people to walk under. Where width allows, even here we should layer our planting.

Trees in grass lose most of their microclimate
Trees in grass lose most of their microclimate and ecology. Traditional design fails us here.

If we replace that grass with a range of groundcover plants – not a monoculture – you begin to get a little more variation; different root structures and depth, different foliage shapes, height, form and flower. More variety, more microclimate, more food source, more ecology. Looks good too.

Next we add shrubs and suddenly we are into an new realm, that of woody plants (I’m being simplistic here, many groundcovers are of course woody). Shrubs create three-dimensional space with their frameworks, within which micro-worlds reside. Deciduous plants shed their leaves, as do evergreens, and this begins to build leaf litter – mulch. Don’t tidy it up! We need ecologies in that soil, and microbes need food. Our obsession with tidyness has a lot to answer for. Suddenly, we have height in our micro-climate, three-dimensional form. We humans (for we scale everything according to our own height and perception) can walk amongst these plants, take part, interact. Our microclimate is now two metres high, maybe more. But something is missing and it’s still too hot…

Here we have (in Umm al Emarat park, Abu Dhabi) the beginings of an true microclimate. This is a treescape.
Here we have (in Umm al Emarat park, Abu Dhabi) the beginings of a true microclimate. This is a treescape.

Trees! Now we have a game changer and our micro-environment just became vast, in relative terms, maybe up to 30 metres, though 10-20m may be more average. We now have true diversity of shape, height, leaf, flower and roots. We have shade! Under trees it may be 10°C cooler and we love it. Plants love it too. Moisture now gets retained within the human habitable zone, fungi and microbes thrive in soils, insects and birds abound. This is our urban jungle and we need it. The planet needs it. This tiny sliver of crust we live on can be rich, abundant, in every climate and every place, if we put our minds to it, if we have the will. And when the planet becomes searing, creating livable environments with trees of any type, may be the only thing that keeps us alive, unless we become troglodytes.


This is the next level of landscape design, the new challenge; creating future ecologies and environments that matter, that keep us cool, that give us resources and soothe our souls. We will create new (novel) ecologies that fit the changing environment, trans-migrating parts of ecologies that once lived elswhere. In that place they may be dying out, as might your local ecology. If they now fit where you live, that’s where they need to be. In turn, that place of origin may itself need to adapt and change. In all things and all places, we need microclimate, shade and soil.

Are you up for it? I am!

Posted in Adaptive Planting, Arboriculture, Biophilia, Climate Change, Design, design principles, Dubai, UAE, Ecosystem Services, Environment, Garden Design, Landscape Futurism, landscapes, Middle-East, Planting Design, Sustainability, Trees, Treescapes, Urban Landscapes Tagged with: , , , , , , , , , , ,

Grassess in Abu Dhabi
November 29th, 2019 by Mark Laurence

The other side of work I undertake in the Middle-East region (other than tree consultancy) is planting design, for creating new landscapes always brings me a special joy.  When they are in public spaces, I love the chance it gives to interact (albeit remotely) with many people in place, over time and hopefully, enhance their enjoyment of that place.  In the public realm, what that place is, is being questioned and challenged in the light of urbanisation and climate change.  Ecology and environment are driving design as never before.

I am about to start working on a collaborative project in Saudi Arabia.  It will involve the specification of many trees, shrubs and groundcovers and  I get to find out just how many locally-sourced big specimens I can find that are of acceptable quality.  Much of this will come down to the application of formative pruning in the nursery and I’ll be on the lookout for the best available in the region.  I suspect I’ll be sourcing a lot from neigbouring UAE, simply because of familiarity of sources.  Quality remains a challenge, though.


Excess Irrigation in a Dubai housing area

My most pressing concern I have is how to improve on irrigation  techniques, which are traditionally massed  surface drip lines onto marginally improved sand.  This is inefficient and wasteful and I shall be looking at the use of moisture retention mediums and sub-surface irrigation.  I believe most watering of landscapes in arid climates could be cut by half, just by more efficient application and retention, in the right place.  The picture above shows  typical wastage in a Dubai suburban landscape.

Whilst urban planting requires urban plants, I will also be looking at the use of more climate-adaptive species, which I think is important in an era of climate crisis; the Middle-East is going to struggle to cope with every degree of temperature increase.  The use of more desert-adapted planting is not new, and not applicable everywhere but I believe there is much scope for experimentation and new thinking.

The power and the beauty

For me, planting design is about building communities, layering types of plants together in harmonious associations that fit.  I don’t mind grouping plants together that come from different geographical regions, but they have to come from a similar ecological niche.  Such design is so much more than just nice foliage contrasts and I believe the results can be subtle, but profound.

Landscape must, of course, fit our purpose but I believe we tend to pursue this end to the exclusion of everything else.  Nature is the basis of landscape, and so too is ecology, ecosystem and planet.  We should not divorce our landscapes from this reality; rather, they should always seek to remind us of these connections.  So yes, in town centres and urban streets, we have our eco-bling landscapes; vibrant places, exotic, heady, purfumed, exciting.  Nature at it’s most unbelievably flamboyant (cue pic: delonix, the flamboyant tree).  Elsewhere, we need more grounded landscapes, more real, more connected to place.


Delonix regia, the flamboyant tree

I love this tree, it is everything I have described above, pure eco-bling.  Yet it is not appropriate everywhere and because it has become a part of the standard landscape palette, I belive it is overused, and used in places where other species would be more appropriate.   I think there are many trees and shrubs that could be used in the region that haven’t been tried yet, from East Africa, for example.  The climate there may be more equatorial and more varied but it is not so remote or different as that of some exotics imported from sub-tropical climates (the Delonix mentioned above is from Madagascar, again not too dissimilar).

I think planting design in the Middle-East faces a whole new range of challenges and opportunities.  The changing climate will force new thinking, to match the new development and the new understanding that is emerging of our intimate relationship with nature.  I’m hoping to contribute towards that new expression and understanding.

Posted in Adaptive Planting, Biophilia, Climate Change, Design, Dry Garden, Dubai, UAE, Environment, Garden Design, Middle-East, Natural Landscapes, Planting Design, Regenerative Planting, Sustainability, Trees, Urban Landscapes Tagged with: , , , , , , , ,

Adaptive landscape design
April 25th, 2019 by Mark Laurence

The world is finally, at the last minute, waking up to the impending effects and consequences of climate change. In the scramble to work out what we must do (apart from the obvious cessation of burning fossil fuels), one thing, one factor is looming large: we need to put carbon back into the soil, where it can be stored indefinitely, and we need to reforest the Earth. Much of this is in the agricultural realm but there is a huge amount that can – and must – be done within the landscape and horticultural sectors.


Horticulture has a MISSION, it just doesn’t realise it yet

At the centre of this is good soil husbandry, something that we have largely forgotten about. Modern agriculture bypasses all need of soil health by chemically feeding crops; no need for microbes, nutrients, humus, mycelium or earthworms. Chemical fertilisers and herbicides bypass the lot. Most of our soils now are depleted to the point of useless by chemical farming, exacerbated by the tradition of ploughing, which causes erosion from rain and enables much of the soil carbon to move back into the atmosphere.

So whilst we need current global models of food production to transform into regenerative agriculture and agroforestry, we also need to look at our urban landscapes and gardens, and create a new design ethic, a new paradigm, even. I can’t deal here with agriculture but I have been thinking long and hard on what the landscape and horticulture trades need to do; fortunately, I believe there is a lot that we can do.

We need to envelope our existing horticulture trade within ecology, to create an “environmental horticulture” You could also call it ecological, resilience or regenerative horticulture. We (those of us in the trade) know that as a profession, the training of both horticulture (growing) and landscape (doing) are in decline. Horticultural colleges have shrinking budgets and often get the less ambitious or capable students; after all, who is inspired by the prospect of strimming verges or hedge-trimming another unloved carparking lot? Yet last year’s report by the Ornamental Horticulture Roundtable Group valued horticulture at £24.2 billion in GDP in 2017. That’s not inconsequential, yet it goes unrecognised. Fortunately, there is a way to make it much more enticing to prospective students.

Horticulture has a MISSION, it just doesn’t realise it yet. That mission is to adapt our urban landscapes and gardens to cope with climate change, to mitigate temperatures, water flows, to grow biomass and regenerate soils back to health. Healthy soil is the foundation of life, of all life, including our own. Good soil holds fertility, water and carbon. Yet who amongst us now knows much of soil science? Who designs landscapes as ecologies, as “novel ecosystems”, who chooses plants because they have these abilities, not just for pretty flowers? Who designs plantings for their biomass harvest, for creating mulches to feed the soil?

In this respect, I don’t believe it’s necessary – or right, in fact – to work with native plants only. What is native? What was native? What was here 11,700 years ago when the last glacial period ended and the glaciers retreated? Flora and fauna move around the globe all the time, they are opportunistic, not fixed permanently into some tightly integrated ecosystem. We know there is no “ecological climax”, no ultimate ecosystem for any given place. As temperatures rise, climate zones are now shifting away from the equator quicker than Nature can keep up, although it’ll get there eventually. Maybe we help nature, rather than interfere when we bring in exotic plants that naturalise. Maybe those plants are the start of new ecologies that will adapt to the rapid changes that this climate emergency is bringing us. If plants do well, we need to understand how to enhance and build new ecologies with them. This is how we adapt, how we survive and how we rectify the damage we have done as a species; not by returning to some pristine “before” (which doesn’t exist) but by assisting Nature to heal and adapt. The Earth will do this all by itself, and has done so many times. It doesn’t mind if it takes thousands, or even hundreds of thousands of years to adapt. But we do; we can’t wait that long.

So horticulture needs to stop growing pansies in peat with unrecyclable plastic trays and start sorting out which plants really matter for our future; which ones contribute to new and existing ecologies, which ones are good for biomass, which ones contribute to soil health, which ones give us ecosystem services. We should not enhance one environment at the expense of another.

What’s needed is a very-near future profession of trained eco-warriors, soil saviours, tree patriots and landscape lovers. It needs people who understand soil, who know how to design and use sensors, data and the internet of things, people who see what’s coming and how to mitigate and reverse negative effects, people who really know how to design and install green infrastructure and future automated robotic maintenance systems. Our landscapes can grow food in amongst all the beauty, with urban food forests. We need new knowledge built on old and we need passion, commitment. A wise government would fund this for the returns will be numerous.

This is the enlightenment, that out of dire stress and trouble, we could really learn how to value, connect with and protect this crazy, beautiful world within which we live. Or we can do nothing and watch it all go to hell. I know which I’ll be doing.

Posted in Adaptive Planting, Biophilia, Climate Change, Design, Ecosystem Services, Edible Planting, Environment, Garden Design, green roof, Green walls, Landscape Futurism, landscapes, living walls, Natural Landscapes, Planting Design, rain gardens, Regenerative Planting, Smart Cities, Sustainability, Trees, Urban Landscapes, Vertical Greening Tagged with: , , , , , , , , , ,

Children and water, Boston
January 30th, 2019 by Mark Laurence

The safety of children and water is potentially a controversial issue and I want to make it clear from the start that these are genuine thoughts, with genuine intent but please don’t try and hold me liable for any disasters or accidents that may befall you or your loved ones. I cannot be responsible for your life and any decisions you make on this issue are yours alone. I naturally hope and intend that only good and positive benefit can come from this writing.

Children have an almost universal fascination with water, and parents an equally almost universal fear of it, or of their children being near it. We have all heard the horror stories of children drowning in a pond, or even a shallow puddle and our hearts go out to those unfortunate few who have suffered such a fate.

children enjoying the water

Children enjoying the water

But we seem to live in a fear-driven compensation culture, which stifles creativity or adventure because of the risk of hurt. Authorities and companies cannot afford to take risks, or allow other to take them. Consequentially, more and more things get banned in the interests of public safety. The world may be safer as a result but it is certainly blander.

As a young child I would walk the suburban mile or so to school on my own, ride my bike to visit friends, play down at the dump, swim in the sea and generally have freedoms many children are not now able to experience. But creative play is an essential part of a child’s development and must be catered for somehow. A love and respect of water should be encouraged and this requires contact and familiarity with it. I believe that those most at risk are those who do not appreciate the dangers and those who are too young to.

A burst watermain in Iraq

Out of the disaster of the Iraq war, this burst water main provides a moment of joy for children and adults alike.

It is true, of course, that much of this familiarity, or lack of, will be caused by the geography of your environment. If you don’t have water in daily proximity, it is hard to become familiar with it. If you don’t see with your own eyes how a little stream can become a raging torrent after a downpour, then you will not be aware of the potential danger. Knowing the dangers brings about respect, gives us boundaries beyond which we know that things aren’t safe. In urban areas, the increasing use of WSUDs (water sensitive urban design) in the form of swales and rain gardens is a positive development.

There’s another good reason for us to have regular contact with water and that is a biophilic one. Water is a vital element, which, through modern living, we now tend to regard as no more than a right of utility. But water is the life force of the planet, and so of ourselves. Why else would we want it in our gardens? It soothes us, distracts us from our cares, puts us in touch with those deeper fundamentals of life, if we but let it. Children who experience this often can only be better off for it.

Children playing in a rain garden
Children playing in a rain garden in their family home. When dry, this is empty.

So if I’ve convinced you that it’s good for children to experience water, let’s think about how we might do so with some safety. First of all, young children should be supervised by an adult or responsible elder child, that goes without saying. I don’t advocate that you leave them alone.
I don’t know if there are any statistics available as to the ages of children that have accidents with water, but parental sense will tell us all that children under five have little comprehension of danger and must be watched very carefully, as must those of all ages with special needs. Water features should perhaps be fenced off while children are in their early years.

If there’s not much you can do about water in your wider environment, then you can perhaps create a feature in your own garden.

pond profile showing gentle slopes

This drawing of a stream cross-section could also be for a small pond. Pebbles and shingle make a good base, which the children can play with. Shallow water with gentle slopes mean that if they fall over, they can stand up and climb out.

Steep sides are the most dangerous aspect of a water feature, preventing children (and animals) from being able to stand up or climb out.

Loose paving on the edges of ponds is another risk factor; use only large slabs or stones and make sure that they have only a small percentage of overhang, and are securely cemented in place. Better yet, use a pond-edge design style which doesn’t use paving in this manner at all.

safe play with water

A reminder of what it’s all about – fun! Don’t do this on paving which may become slippery and prevent algal build-up.

With gently sloping sides, layers of subsoil, gravel or shingle will protect the pond liner and give good grip for feet and hands – bare liner tends to be slippery and is more vulnerable to damage. Good construction helps all round, although that is not the subject of this article. If you have an overhanging deck, make sure the water is not too deep at this point and that children can’t get trapped underneath it. Metal or plastic grids can also be built into a pond, sitting just below the water level. These need careful thought as to their siting as they must take the weight of a person without breaking. The danger is these can look very industrial.

As a final thought, if you want moving water but don’t want the depth of a pond, consider a stream garden, where water just flows along a shallow water-course. There is no pond as such and the water just disappears underground into a hidden sump tank, which houses the pump and which is inaccessible..

a stream garden

This stream feature is used by children – the water barely laps their ankles. Stones are moved, small dams made…

In conclusion, there are many things that children learn from playing with water: self confidence, balance, awareness of danger, responsibility, experience of wildlife and of Nature’s rhythms. A careful and reasoned approach is what is required for allow a child safe, creative exploration.

And of course, we adults are all children at heart, too. Play safe.


First published in 2009, updated 2019

Posted in Biophilia, Design, Garden Design, landscapes, Ponds, rain gardens, Water Gardens Tagged with: , , , , , , , ,

Living walls as part of a building biomembrane
January 22nd, 2019 by Mark Laurence

NOTE: This article was first written in 2006, so some aspects have been updated to reflect current realities.

Hundertwasser House, Vienna

Biomembranes is a term I’m borrowing from biology (the structure bounding a cell) to describe the outer skin of future self-sustaining buildings. I have stated elsewhere that I believe that for the built environment – and therefore our societies – to become sustainable, every building and community must deal with its own wastes, generate its own energy and provide nourishment – both physical and emotional – for the occupiers. Only by the creation of truly independant, carbon neutral buildings can we achieve this.

A building biomembrane
A building biomembrane

This would be a subtle and far reaching art, not easy to achieve but I believe that the rewards would be many, not to mention necessary. In this respect, the science of biomimicry will play an important part, for example, in developing paint-on polymers that photosynthesize energy, or tensioned fabric five times stronger than steel or kelvar, made with no heat or pollution, just like a spider’s thread. Whilst we haven’t perfected those products yet, let me list some of the benefits we can look to achieve in the near future:

  • horizontal and vertical skins of living plants that insulate, filter the air of dust and pollution, dampen noise and attract wildlife. Current living walls are used sparingly as art pieces.
  • composting and filtration systems that clean the building’s waste and return nutrients and water to the biomembrane and surrounding landscape.
  • Algal biofuel production using building wastes.
  • interior landscapes that provide internal cleansing and beauty.
  • blurring of internal/external space.
  • energy generation as integral with the building fabric as passive solar/pv/wind.
  • pedestrianised streets as wooded valleys or urban forest gardens.
  • SUDS drainage to filter excess water straight back to the local water table.
  • pedestrian/bike/electric vehicle shared surfaces removing car domination.
  • increase of social space by good design.
Living wall by Mark Laurence, Trondheim University, Norway
Living wall by Mark Laurence, Trondheim University, Norway

Some of these ideas are becoming well established, such as green (or living) roofs and walls, others are being played with by a few, but as yet, no one is trying to pull all these things together into a cohesive whole system. I am thinking of concepts such as combining vertical greening with greywater filtration, active cooling systems, air purification and algal biofuel from building wastes. I have recently been inspired by the work of the world-renowned architect Ken Yeang (Llewelyn Davies Yeang) based in London and Malaysia. Ken has worked extensively on the concepts of bio-climatic buildings and so his ideas are very close to my heart. Furthermore, one of his main concerns is the organisation of internal space by social structure, rather than by economic return on investment. This very much reminds me of the work of Christopher Alexander (see Pattern Language); despite apparent differences of style, the underlying philosophy is similar, Ken’s work placing it into a modern urban context.

Bio-climatic tower by Ken Yeang

There is a lot to do but the future will need autonomous bio-buildings that take care of themselves without external input, other than sunlight and human organisation. The main challenge is then to retrofit these systems to existing buildings, which will always be the large majority of available building stock.

Meanwhile, take inspiration from the work of Hundertwasser (top right) and Ken Yeang (bottom right). The application of green technology, biological water filtration and the use of every surface to create living, breathing buildings shows that humanity can and will grow up and see beyond the profit line, which so dominates and limits current thinking.


First published in 2006

Posted in Biophilia, Climate Change, Design, Ecosystem Services, Environment, living walls, Sustainability, Urban Landscapes, Vertical Greening Tagged with: , , , , , ,

Vertical flow pond biofilter
January 21st, 2019 by Mark Laurence

The maintenance of ponds is the one thing that people seem to be the most uncertain about – it seems shrouded in myth and confusion.

Some of this is basic ignorance of simple biological structures but this is enhanced, in my view, by the profession’s over-mechanised solutions to obtaining clear water. There is also a tendency to think that a bottle of some substance can perform miracles and solve unclean water problems – but it can’t.

First lets be clear (pun intended) there is a difference between clean and clear water. A pond’s biological functioning might be quite happy with water that is healthy but carries an amount of suspended solids. The health of water is far more dependent upon keeping levels of Nitrites, Nitrates and Ammonia low; these have nothing to do with water clarity.

Our aesthetic taste demands clear water, however, and it is certainly true that pure, clean water is always the most beautiful to behold.

To obtain and keep clean and clear water, we must keep the pond in balance, so a simple understanding of water balance is useful. This involves two things; mechanical filtration to remove solids, and bacterial action to remove pollutants.

First, let’s dispel a few commonly held myths:

  • You need a magic filter box with lots of plumbing entrails
  • You need something called an Ultra Violet filter
  • You need to test the water frequently
  • You need to change a percentage of the water at intervals

A filter box gives some mechanical filtration of solids and creates a home for micro organisms to do their work. It is these bacteria that convert Ammonia into Nitrites then into Nitrates, and they are naturally existing in any aquatic ecosystem. Thus it is not the filter box that does the majority of the work but bacteria already present in the pond.

An Ultra Violet filter kills algae, which cause green water. Algae feed on nutrients available in the water – remove the nutrients and you solve the problem at source. This may be an oversimplification, but it is fundamentally true. A UV filter is therefore treating the symptoms, not the cause.

I have rarely found a situation where tests have told me anything that my eye has not. That’s not to say that tests do not have their uses but I would suggest that you can observe when a system is out of sorts. Nature is incredibly good at correcting imbalances, given a chance.

Ponds are an open system and will always lose water through evaporation, so some new water is always going to be added via the garden hose or a top-up system, preferably from harvested rainfall. Water change regimes are quite unnecessary and probably unhelpful to establishing a balanced system, which has to start again each time this is done.

It is true, however, that small garden ponds are often unstable in terms of quarter quality, for the following reasons:

  • The water body is too small to maintain a stable and permanent ecosystem
  • Water levels and temperatures fluctuate widely – small isolated ponds would naturally dry up
  • Fish stocking levels are usually too high, creating biological overload
  • There are insufficient plants and bacteria-rich medium to ensure a healthy biological cycle
This small rill incorporates a bio-filter alongside the wall. Spouts pour water into the filter, where it is cleansed before being passed back into the rill.
This small rill incorporates a bio-filter alongside the wall. Chutes return water to the rill, having been drawn down through the biofilter.

All this adds up to one thing: excessive nutrients in water, leading to algae growth, lack of oxygen, cloudy water – in the end this leads to eutrophication.

You have to remember that the average sized garden pond is a mere puddle in Nature’s terms. Ponds of that size would likely be impermanent and support little life, other than in a temporary or cyclical manner. In summer a small pond would dry up unless it were fed by a stream or high water table. If it were fed by a stream, then the pond wouldn’t be a pond – it would be a bulge in the water course.

We must accept, then, that the garden pond is a highly artificial environment, which needs some help in order to remain attractive to us, and to its inhabitants. What form should that help take? Where space is severely restricted, a filter box may be the answer, for it crams a lot of bacterial housing into a small space.

The same can be done, however, by the use of natural biological filtration, which is designed to be an attractive feature of the water garden itself, rather than a utilitarian box than must be hidden. In its simplest form, this can be no more than a gravel filter bed built into a stream which feeds the pond. Planted with suitable aquatic plants, this can be a major feature and is also good where hungry fish tend to devour plants placed in the main pond.

This filter bed is built into a stream feeding to a pond

This filter bed is built into a stream, flowing, right to left, which is pumped from a pond, to which it returns. The filter becomes an integral part of the overall design, forming an important aesthetic feature.

How big should such a feature be? Natural filtration is an inexact science, so the bigger, the better. A surface area of one quarter to one third of the pond surface area is a good guide. A more intensive system uses a vertical, rather than horizontal flow. These have a much higher cleansing rate and so can be made smaller, thus saving space. However, they are somewhat more complicated to construct. These operate on a similar principle to the plastic filter box but again, they have a huge aesthetic advantage.

I have hardly scratched the surface of this fascinating subject, but the main point is that you are helping Nature to do what she does already, rather than taking control with technology.


First published in 2008

Posted in Design, Ecosystem Services, Garden Design, Ponds, Water Gardens Tagged with: , , , ,

A good transitional entrance space between house and garden
November 6th, 2018 by Mark Laurence

This article was first published in 2009.

There are few aspects of our built environment more emotive that that of the entrance door. It can mean shelter, warmth, food, security, friendship. All of life involves the act of entrance, from the earliest caveman to the present day.

How many times per day do we go in and out of buildings and our homes? We scarcely stop to think about it, yet entrances all convey subconscious messages which can affect us on deeper levels, for good or ill. Some doorways are enticing, friendly; some oppressive; some just dingy and neglected. Most are probably functional and non-descript, of itself a message just as powerful as the others.

We move from our homes to cars, to shops, offices or other houses. Each time we do this we experience a subtle shift in light levels, humidity, warmth, expectations and intentions. Our mood shifts and adjusts with our purpose and our expectations. Going to work we might subconsciously don a mask as we enter busy offices or a large railway station. Arriving home again, we relax as we walk up the path, shedding the mask as we close the door behind us.

A Wisteria-covered pergola gives a deep connection

A Wisteria-covered pergola gives a deep connection between the kitchen door, driveway, outhouse and rear garden

The physical structure of a building and its entrances tell us what to expect: grand doorways with tall columns tell us of status, power and authority. Grim entrances to prisons have an unmistakable message. In public buildings especially, proportion is everything, where tall ceilings and doors give formality. By contrast a humble cottage door or an old garden gate recessed into an ivy-covered wall might look secretive or inviting, asking us to explore the spaces beyond. What do the doors to our homes tell us? Most front doors are rather bland or feel inauthentic, for example the many mock-Georgian style doors on modern houses offer us nothing more than a thin veil of pseudo-style applied over a nondescript structure.

In the home, layout and door position is also important. The front door is our formal entrance to the world, the back for our private comings and goings. Yet how many house layouts truly observe such simple criteria? Some houses have both the front and back doors equally visible, with no clear indication as to which is which. Or the back door opens onto a narrow side passage, rather than directly onto the garden. Many of us live with awkward house layouts.

Overcoming the problem of awkward flow is, however, fundamental to the harmonious functioning of a house and its occupants. On occasions when looking at a house and the way it connects to the garden, I have recommended the re-location of the rear door. It sounds extreme but I have had several clients who were very glad they took my advice. Fundamental problems sometimes need bold solutions and the picture below is one such example.  Here, a new connection from kitchen into the garden via a (new) seating area made a big transformation.

French doors give connection to the garden

New French doors give connection to the garden, creating a new experience in this house

French or patio doors aren’t always the bonus they’re meant to be, though. Sometimes these confuse the traffic-flow and can destroy the usability of the room in which they occur. Lines of movement (inside or out) should not cut through a still-point. Of course, sliding doors which truly open up the house and invite a more relaxed transition can be fantastic. It’s all down to careful thought and good design.

So much for placement, what of the physical act of entering and leaving? All too often it’s a bit, well, abrupt. Ground and wall meet at the perpendicular, at which point, there’s a door. You open it, go in or out. That’s it – all over with. Yet it takes a moment to adjust, from one environment to another, both physically (light and warmth) and mentally (tasks, purpose, relaxation). Ideally therefore, we need a space in which to adjust, to experience transition, even if it’s for just one second. That space becomes an area that is “in-between” – it could be a porch to the front entrance or a pergola to the rear. A covered walkway might lead to the car, a path or set of steps might connect us to the garden.

How this transitional space is styled will of course depend upon its use. For a front door, nothing beats a good porch or recessed doorway. The visitor waits in this transitional space for the door to be opened, the owner pauses to find their keys. Both might be glad to be out of the rain, or bathed in a welcoming light at night. Where possible, the porch should be preceded in the approach by a path and suitable planting, building up the sense of arrival. In these days of open-plan front gardens, attention to these simple things can make a big difference.

Where a door fronts onto a street, a roof canopy over the door and some tubs or wall planters might serve. A step up onto a different level might be frowned upon by planners, but where disabled access is not an issue, a step up, off the pavement can make a huge difference – suddenly we are in stasis, out of the busy flow of the main path.

To the rear, where a door connects you to the garden, there are multiple ways to enrich the experience of transition. A pergola might frame a door and be part of a larger structure which defines an outdoor room. Conservatories and lean-tos might be the connecting space. Loggias and verandas make a great transitional area. Where the back door has to be to the side of the house, perhaps make a shady passage covered by pergola, with ferns, foliage and climbers to give dappled light. Choose a good brick or stone and make it feel like a tunnel leading out into the garden proper.

So think about the way you move in and out of your house. Imagine the use, mood and character you wish to create and then find the structure to answer that need. A good entrance can really root a building into its environment and enhance the user experience considerably. If a building feels settled, like it belongs, you will too. Don’t put up with the merely adequate – enrich that transitional moment and rediscover the lost art of entrance.

Posted in Design, design principles, Garden Design, landscapes, Uncategorized, Urban Landscapes Tagged with: , , , , , , ,

November 2nd, 2018 by Mark Laurence

This article was first published in 2007 and has been updated 2018.

Future gardens will be an integral part of a living bio-system that is part house, part garden, an energy conserving and production environment.  It will also be a resource for water retention and cleansing, food production area, biomass and environmental haven. Above all, it must continue to be a sanctuary for the soul and from the world at large.

Why do I say this?  We cannot consider the future of gardens without accounting for climate change, which is now having a tangible impact on us all. The 2018 IPCC report says we have 12 years left before things reach the point of no return.  Whilst there is less talk now about global oil reserves peaking and that energy will be in increasingly short supply, it is still true that we have a long way to go before we have a fully renewable clean energy supply chain.  Whatever the outcome, big changes are on the way.

So when we look to the future of our gardens, it’s not so much a matter of what style or vogue will be popular, for such things come and go and in this context are not particularly relevant.  You might imagine it is a case of asking what will our climate be like and how will gardens adapt.  Yet to talk only of adapting plants to suit the changing conditions is actually to miss the main opportunity for our gardens to become part of the solution to global warming and perhaps, even a core part of our individual – and so collective – survival.

House-garden water capture, cleansing and re-use system

House-garden water capture, cleansing and re-use schematic.

That might sound ridiculous in the face of such monumental problems but I don’t think so.  If we all decided to make sure that in our personal lives, we were “carbon neutral” (or as close as possible) then energy demands and pollution from domestic use would drop considerably.  At a rough estimate, gardens in the UK occupy about 4500 km2 of land area (Davies
et al. 2009), mostly in urban and suburban areas.  This makes them a precious resource and opportunity for change on a big scale.

The first thing we have to do is start looking at our environment as a living bio-system; in this case, the house and garden, with its connections to the wider world (air, earth, wind, rain, food, materials, waste, energy, communications).  Think of the garden as one cell in a big organism. Almost all the elements this cell needs to survive are coming from outside, beyond its sphere of influence.  Yet the way that cell is constructed, used and connected to its immediate surrounds (garden) could, if designed correctly, reduce its dependency on external manmade systems. To decrease those we must increase our connectivity with natural systems, namely the sun, wind  and rain.  To put it more directly, with have to reduce to a minimum the inputs and outputs of our homes.

A fedge (fence-hedge) uses biomass grown in the garden to create new boundaries. good for wildlife

A fedge (fence-hedge) uses biomass grown in the garden to create new boundaries. Good for wildlife and resource conservation.

Those items which we cannot produce internally need to be sourced from outside as close to us as possible. Therefore neighbourhood and regional systems need strengthening to minimise production/transport costs. This is particularly true and desirable for food products, but also building materials etc. For that reason, even if we manage to live off-grid – the ultimate, but extreme, conclusion to this line of thought – we cannot do it all alone and live in splendid isolation, nor would most of us want to. Many bio-systems will only work efficiently when connected together to give sufficient inputs to allow them to function properly (for example, reed-bed sewerage systems). Local community-generated bio-systems are essential to a sustainable future.

The main areas which the outside garden spaces could deal with are:

  • Passive solar gain (microclimates)
  • Water saving and (grey water) cleansing
  • Waste recycling (composting)
  • Energy production/conservation
  • Increasing site biomass
  • Food production
  • Biophilic nurturing
  • Nature conservation/biodiversity

You may think this all sounds very philanthropic, but where is the incentive to expend all this time and money “greening up” our homes and gardens?  Some of the incentive will be economic; for example metered water users already consume about 15% less water than unmetered and government will gradually introduce a number of Carrot and Stick measures.  But as cost of pollution will have to be met by industry and so, by consumers, simple economics means that inevitably everything will get more expensive.  For many people, I suspect that having a lifestyle that gives independence and doesn’t add to pollution will become increasingly desirable, as we all witness first or second-hand the effects of climate change.  Whilst we all see the horrors of hurricanes and droughts in distant lands, at home (for me, the UK) we see increasingly severe flooding etc. right on our own doorstep.  Less dependency on outside systems will give increased sense of security in an uncertain world.

In all of this, beauty and relaxation will be paramount, so gardens will still fulfil this most traditional and personal of roles, giving us joy, relaxation and sanctuary.  For example, looking at a beautiful water system of rills and planted gravel filterbeds is made all the more exciting by knowing it has a useful function and is saving resources.

A rain garden which captures roof-water and allows it to infiltrate the ground

A rain garden which captures roof-water and allows it to infiltrate the ground

For these principles to be taken up by the average garden-owner and made successful, we must resolve two conflicting issues: the subject needs to be driven by a sense of fun, adventure and positive aspiration to really make a difference and yet we must also avoid the “dumbing-down” or over-simplification of a complex topic, something that can occur when it appears in magazines and TV shows.

An example might be solar panels: it would be wonderful to run your garden pond pump, shed, or garden office from solar panels – no cables to the house to bury, a good eco-friendly solution. But you have to balance that ideal with the cost of initial installation (probably greater than laying electric cables from the house), the limitations of supply and the increased maintenance that may be involved.  Having got your solar supply, you might be frustrated to find that you can’t charge your battery mower if you didn’t purchase a high enough generative capability.  This is typical of a fragmented approach to sustainability – it’s a start but not really useful just thinking of the power to your pond and ignoring that used within the house, or your car.

 

So where are we?  Standing on the threshold of an exciting new future, I would say.  Technology and information is available as never before, and hooking up to the IoT (internet of things) is great fun and useful too.  The brightness, however, is troubled by the looming stormclouds on the horizon and the knowledge that the societal cost of failure is high – and will be witnessed by ourselves but paid for by our children.

I do firmly believe that we can all make effective choices in what we do and in what we demand of the world, of business and our societies.  We have to make rational choices and sometimes temper our own personal indulgence.  Gas or electric patio heaters may be a nice luxury but the environmental damage is not justifiable.  Maybe a log burning fire basket is, provided we do other things to counter the carbon emissions, such as growing more bio-mass.  Extra woolly jumpers may simply be the best bet along with passive solar designed spaces!  Most issues simply come down to us making informed decisions and balancing personal ease with environmental sanity.

Remember, what sounds “eco” or fringe today, is going to be tomorrow’s norm.  Get out there, explore ideas and enjoy being the change!

Posted in Adaptive Planting, Climate Change, Design, design principles, Ecosystem Services, Edible Planting, Environment, Garden Design, green roof, Landscape Futurism, Planting Design, rain gardens, Smart Cities, Sustainability Tagged with: , , , , , , , , , ,