Category: Landscape Futurism

March 13th, 2020 by Mark Laurence

In part one of this four-part series, I discussed the colonization of brownfield sites in the UAE’s cities with a range of trees and shrubs – almost all of them “exotic invasive” species.  I argued that these could be forming the basis of new, adapted ecologies.  To revise those arguments, please the link at the end of this article.  The next question is, once we accept this premise, how do we create these new ecologies as a conscious expression of our own adaptation to climate change?

A self-seeded landscape, Abu Dhabi

First, let’s understand that we need these landscapes to be unirrigated.  Why? Well, in the Middle East especially, water is a precious resource and expensive; the UAE is particularly bad, with a per capita use of 550 litres/day.  So with landscaping, let’s keep the irrigation for the urban centres, parks and gardens.  If we just focused, for example, on all the miles of roads and interchanges between Dubai, Abu Dhabi and Al Ain that are irrigated, and imagine these replaced with unirrigated greenery, the water saving from this alone would be massive.  Yet that is an immense challenge, for as soon as you plant something in a desert, you must water it.

If we want a vibrant plant ecology, then we also need a vibrant soil ecology, something that conventional landscaping ignores completely

I think this is the key, that planting in such a climate rarely establishes without help, whereas seeds can.  What we need therefore, is a methodology of establishing and maintaining, seeded landscapes.

Flowers of Prosopis juliflora attracts bees and insects

It is true that in a scenario where we are consciously creating an unirrigated landscape, we would want to greatly increase the odds of establishment.  In this respect, much detailed assessment would need to be given to soil amelioration.  If we want a vibrant plant ecology, then we also need a vibrant soil ecology; this is crucial and something that conventional landscaping ignores completely. A large part of this would be creating contour swales across the site to capture whatever rain falls and to ensure it soaks into the soil. Even a small change of elevation can change the conditions and so the ecology that can grow there.

Once we’ve created swales, can we build a healthy soil, rich with microbial activity and naturally water retentive in such an arid climate?  I think we can, but we must first change our thinking from one of assisting landscapes with external inputs (irrigation) to that of creating self-sufficient ones, with cyclical, living, self-sustaining ecologies. Soil becomes the vital kingpin in all this, not just an anchorage medium for plants. 

Native soils need to be worked with, not replaced.  They can be moderated, made more moisture retaining, but basics like salinity and pH will always dictate plant choice.  First and most important, is to increase the soil’s water retention capacity. There are a number of ways to do this, involving additives which may incorporate clays, granules or other water-holding mediums and we know that when used in irrigated landscapes, they can reduce water demand by up to 50%. Given that an unirrigated landscape might have periods of time when it is extremely dry, we need a medium that doesn’t become hydrophobic if it does dry out and that will react swiftly to absorb water when it does arrive.

Sesbania sesban, a nitrogen-fixing shrub

We can also inoculate the soil with mycorrhizal fungi cultured from local, healthy environments to enhance soil micro-ecology; there is little point in importing this from another part of the world, as the relevant strains of microbes are likely absent.  Microbes and bacteria are the essence of good soil. Many of the plants used will be nitrogen-fixers, and so live in a symbiosis with certain bacteria. They also make nitrogen available to other species, as cycles of life and decay build up.

Organic matter is essential and the best innoculator of bacteria and fungi, but it can be the most problematic element as it is in short supply. One aspect of the practical usage of such landscapes, and a part of the long-term management, can be the coppicing of trees and shrubs for biomass to make compost. Organic matter tends to oxidise if conditions are not conducive, so we need to get things right, but I’m sure that even desert soils can sequester carbon, given the right conditions.

We would need to mix these various elements into the soil to the appropriate depth, perhaps a metre, probably by air injection, and possibly to different depths for the different mediums. Soil preparation becomes the most major, one-time investment in the land but will pay back endlessly over the lifetime of the landscape.

Black Carpenter bees on Leucaena leucocephala

Once the preparation is done we have to seed the land, when conditions are optimal (not when contract deadlines require); this would have to be timed after rain, if possible.  Otherwise, I would give the land a soaking, with our soil amendments helping to retain the moisture, then apply seed, in a variety of ways, possibly by hydra-seeding.  Finally, a locally-sourced stone mulch should be placed over all, to again help retain moisture, but not too thick to inhibit germination.  This would be the entirety of the preparation and installation work. 

Next is the nurturing stage, followed by on-going management and maintenance; this will be very different from a conventional landscape, but no less intensive, at least for the first few years. It may be beneficial to give additional watering to aid plants as they germinate and establish, but this must be done with care, or seedlings could be washed away. We would need to give enough to ensure success, but no more.

Once established, these plants would grow at whatever speed the conditions allowed and a new landscape would emerge over time. Thinning out and reseeding of failed areas would be the main work, acts of stewardship rather than maintenance. Prunings shredded and spread as mulch, soils fit to support life, insects, animals and birds would soon make this place their home. The result would be a slow and genuine landscape uplift into the realms of a new and adapted ecology.


How we design such landscapes, choose which plants to use, obtain the seed and know how to maintain them, is the subject of the next article.

The first article of this four part series is:

Posted in Abu Dhabi, Adaptive Planting, Brownfield regeneration, Climate Change, Dry Garden, Dubai, UAE, Landscape Futurism, landscapes, Middle-East, Natural Landscapes, Planting Design, Regenerative Planting, Sustainability, Trees Tagged with: , , , , , , , , , , ,

Mark Laurence's gravel garden
February 2nd, 2020 by Mark Laurence

Gravel gardens have been around a long time yet with a few well-known exceptions (Denmans, Beth Chatto and more recently, Olivier Filippi), never really make it into the mainstream of garden design. I suspect that for some designers, there is insufficient structure to satisfy, yet that is actually one of the main benefits. This makes them low-impact, from a carbon perspective, and naturally adaptive, with the kind of planting they use.

I have been designing such gardens for the past twenty plus years, and a part of my own garden is gravel, on the area of an old driveway; it’s the part I enjoy the most. Unlike perennial borders, there is structure all year round and I often wander around in the depths of winter, enjoying the shapes and forms, or the scent of rosemary (sorry to say, now officially Salvia). It’s like you’ve brought a little bit of the Mediterranean into the garden. Plants self-seed around and it’s always a bit different every year. It’s a style also eminently suitable for the arid regions of the Middle-East, whether xeriscaped, or not.

Not everywhere is suitable for a gravel garden and the obvious criteria of sun exposure and poor(ish), free-draining soil are a must. Whilst drainage and soil structure can be altered, aspect cannot. The other factor, frost/cold exposure is actually not such a barrier, although it will limit the plant choice a bit.

A part of the design of the gravel garden described below

Some years ago I was tasked with turning an old farmyard on the South coast of England into such a garden. The compacted rubble was on average 50cm deep, so we loosened and/or removed about 400 tons and replaced a similar amount of topsoil into slightly contoured mounds. As it was a farm, the soil was already available stacked on site and there was somewhere to remove the rubble to. We then rotovated 50cm of gravel into the mounded soil to improve drainage and planted with a range of “Mediterranean” plants. Most were from this region, with some Australian/New Zealand species, most notably Phormium (which I probably wouldn’t use today). We also built a stream and water feature, using 30 tons of boulders (glacial, so not strictly true to theme).

Adding 400 tons of soil
Rotovating in a thick layer of gravel

If I were doing this today, I’d leave even more of the rubble in place and blind the soil in over it. Over time I have come to realise that such conditions are an advantage, and expected by many Mediterranean plants.

Placing boulders and a stream+pond

We used a drip irrigation system for the first year of establishment, which was then switched off in the second year. A 50mm deep dressing of 20mm diameter marine shingle covered everything, including the paths, which were left from the original, compacted sub-base.

Planting
After One year
After Two years
After Four years

I tracked this garden for a few years until the property changed hands and learnt some valuable lessons (as you always do), such as don’t put too many larger growing shrubs in, as the openness of the spatial structure becomes compromised. Whilst they are good at establishing initial structure, be prepared to remove some of them as the garden matures. Some, like the Cotinus and Tamarix, were meant to be coppiced every few years, but didn’t have this done. Some perennials work better than others and low mounding shrubs are what make the predominant visual structure of the site.

This last two pictures, plus the header, are a part of my own gravel garden, created over an old driveway, where I constantly experiment with new plants and slowly expand it all.

My gravel garden. Mounded foliage dominates the structural form

Gravel gardening has much to offer and is an appropriate approach for our time, being of low carbon footprint and using plants that are adaptive and generally tough. Have a go, or get me to help…!

Posted in Adaptive Planting, Biophilia, Climate Change, Design, Dry Garden, Environment, Garden Design, Landscape Futurism, landscapes, Middle-East, My Garden, Natural Landscapes, Planting Design, Sustainability Tagged with: , , , , , , , ,

Trees add height and microclimate
December 9th, 2019 by Mark Laurence

Landscapes are all about creating micro-climate, or would be, if designed for that goal. Why is this important and what do I mean?

Almost all life is contained in a thin crust of soil, a wedge of atmospheric gases, and water. Plants are the principal medium that interacts with and regulates all three. Absolutely nothing else does this as well, or at all; think about it.

The way we organise our plants in our urban landscape will determine how well this interaction occurs, how successful it is. Yet I have never heard of a single project that has been developed with this understanding and this goal in mind. With climate change, we urgently need to re-think the way we design our landscapes, and why we design them. Whilst all the human-centric design reasons will always hold true, we need to layer into our thinking this new understanding of how plants interact. To build new ecologies, new ecosystems, we have to design for plants to actually function, rather than just look nice. For when they do this, our environment literally comes alive. More importantly, they might just, if done on sufficient scale, save us from ourselves.

When I use the word treescapes, I don’t just mean trees and grass; we’ve had that for years in the form of parks, and in their traditional form, they’ve done little for us. No, our designs need to build up layers of living material – biomass, for with biomass comes moisture entrapment, shade, food for insects, etc. Think of it in terms of height and depth of microclimate. How much depth is there in a stretch of irrigated grass, maybe 50mm above ground, 200mm below? No species variation, so what we have is little more than a green desert, albeit one that can hold bit a of moisture.

Trees in paved streets are also less able to generate micro-climate, but they are a bit of an exception, as they provide shade for people to walk under. Where width allows, even here we should layer our planting.

Trees in grass lose most of their microclimate
Trees in grass lose most of their microclimate and ecology. Traditional design fails us here.

If we replace that grass with a range of groundcover plants – not a monoculture – you begin to get a little more variation; different root structures and depth, different foliage shapes, height, form and flower. More variety, more microclimate, more food source, more ecology. Looks good too.

Next we add shrubs and suddenly we are into an new realm, that of woody plants (I’m being simplistic here, many groundcovers are of course woody). Shrubs create three-dimensional space with their frameworks, within which micro-worlds reside. Deciduous plants shed their leaves, as do evergreens, and this begins to build leaf litter – mulch. Don’t tidy it up! We need ecologies in that soil, and microbes need food. Our obsession with tidyness has a lot to answer for. Suddenly, we have height in our micro-climate, three-dimensional form. We humans (for we scale everything according to our own height and perception) can walk amongst these plants, take part, interact. Our microclimate is now two metres high, maybe more. But something is missing and it’s still too hot…

Here we have (in Umm al Emarat park, Abu Dhabi) the beginings of an true microclimate. This is a treescape.
Here we have (in Umm al Emarat park, Abu Dhabi) the beginings of a true microclimate. This is a treescape.

Trees! Now we have a game changer and our micro-environment just became vast, in relative terms, maybe up to 30 metres, though 10-20m may be more average. We now have true diversity of shape, height, leaf, flower and roots. We have shade! Under trees it may be 10°C cooler and we love it. Plants love it too. Moisture now gets retained within the human habitable zone, fungi and microbes thrive in soils, insects and birds abound. This is our urban jungle and we need it. The planet needs it. This tiny sliver of crust we live on can be rich, abundant, in every climate and every place, if we put our minds to it, if we have the will. And when the planet becomes searing, creating livable environments with trees of any type, may be the only thing that keeps us alive, unless we become troglodytes.


This is the next level of landscape design, the new challenge; creating future ecologies and environments that matter, that keep us cool, that give us resources and soothe our souls. We will create new (novel) ecologies that fit the changing environment, trans-migrating parts of ecologies that once lived elswhere. In that place they may be dying out, as might your local ecology. If they now fit where you live, that’s where they need to be. In turn, that place of origin may itself need to adapt and change. In all things and all places, we need microclimate, shade and soil.

Are you up for it? I am!

Posted in Adaptive Planting, Arboriculture, Biophilia, Climate Change, Design, design principles, Dubai, UAE, Ecosystem Services, Environment, Garden Design, Landscape Futurism, landscapes, Middle-East, Planting Design, Sustainability, Trees, Treescapes, Urban Landscapes Tagged with: , , , , , , , , , , ,

Adaptive landscape design
April 25th, 2019 by Mark Laurence

The world is finally, at the last minute, waking up to the impending effects and consequences of climate change. In the scramble to work out what we must do (apart from the obvious cessation of burning fossil fuels), one thing, one factor is looming large: we need to put carbon back into the soil, where it can be stored indefinitely, and we need to reforest the Earth. Much of this is in the agricultural realm but there is a huge amount that can – and must – be done within the landscape and horticultural sectors.


Horticulture has a MISSION, it just doesn’t realise it yet

At the centre of this is good soil husbandry, something that we have largely forgotten about. Modern agriculture bypasses all need of soil health by chemically feeding crops; no need for microbes, nutrients, humus, mycelium or earthworms. Chemical fertilisers and herbicides bypass the lot. Most of our soils now are depleted to the point of useless by chemical farming, exacerbated by the tradition of ploughing, which causes erosion from rain and enables much of the soil carbon to move back into the atmosphere.

So whilst we need current global models of food production to transform into regenerative agriculture and agroforestry, we also need to look at our urban landscapes and gardens, and create a new design ethic, a new paradigm, even. I can’t deal here with agriculture but I have been thinking long and hard on what the landscape and horticulture trades need to do; fortunately, I believe there is a lot that we can do.

We need to envelope our existing horticulture trade within ecology, to create an “environmental horticulture” You could also call it ecological, resilience or regenerative horticulture. We (those of us in the trade) know that as a profession, the training of both horticulture (growing) and landscape (doing) are in decline. Horticultural colleges have shrinking budgets and often get the less ambitious or capable students; after all, who is inspired by the prospect of strimming verges or hedge-trimming another unloved carparking lot? Yet last year’s report by the Ornamental Horticulture Roundtable Group valued horticulture at £24.2 billion in GDP in 2017. That’s not inconsequential, yet it goes unrecognised. Fortunately, there is a way to make it much more enticing to prospective students.

Horticulture has a MISSION, it just doesn’t realise it yet. That mission is to adapt our urban landscapes and gardens to cope with climate change, to mitigate temperatures, water flows, to grow biomass and regenerate soils back to health. Healthy soil is the foundation of life, of all life, including our own. Good soil holds fertility, water and carbon. Yet who amongst us now knows much of soil science? Who designs landscapes as ecologies, as “novel ecosystems”, who chooses plants because they have these abilities, not just for pretty flowers? Who designs plantings for their biomass harvest, for creating mulches to feed the soil?

In this respect, I don’t believe it’s necessary – or right, in fact – to work with native plants only. What is native? What was native? What was here 11,700 years ago when the last glacial period ended and the glaciers retreated? Flora and fauna move around the globe all the time, they are opportunistic, not fixed permanently into some tightly integrated ecosystem. We know there is no “ecological climax”, no ultimate ecosystem for any given place. As temperatures rise, climate zones are now shifting away from the equator quicker than Nature can keep up, although it’ll get there eventually. Maybe we help nature, rather than interfere when we bring in exotic plants that naturalise. Maybe those plants are the start of new ecologies that will adapt to the rapid changes that this climate emergency is bringing us. If plants do well, we need to understand how to enhance and build new ecologies with them. This is how we adapt, how we survive and how we rectify the damage we have done as a species; not by returning to some pristine “before” (which doesn’t exist) but by assisting Nature to heal and adapt. The Earth will do this all by itself, and has done so many times. It doesn’t mind if it takes thousands, or even hundreds of thousands of years to adapt. But we do; we can’t wait that long.

So horticulture needs to stop growing pansies in peat with unrecyclable plastic trays and start sorting out which plants really matter for our future; which ones contribute to new and existing ecologies, which ones are good for biomass, which ones contribute to soil health, which ones give us ecosystem services. We should not enhance one environment at the expense of another.

What’s needed is a very-near future profession of trained eco-warriors, soil saviours, tree patriots and landscape lovers. It needs people who understand soil, who know how to design and use sensors, data and the internet of things, people who see what’s coming and how to mitigate and reverse negative effects, people who really know how to design and install green infrastructure and future automated robotic maintenance systems. Our landscapes can grow food in amongst all the beauty, with urban food forests. We need new knowledge built on old and we need passion, commitment. A wise government would fund this for the returns will be numerous.

This is the enlightenment, that out of dire stress and trouble, we could really learn how to value, connect with and protect this crazy, beautiful world within which we live. Or we can do nothing and watch it all go to hell. I know which I’ll be doing.

Posted in Adaptive Planting, Biophilia, Climate Change, Design, Ecosystem Services, Edible Planting, Environment, Garden Design, green roof, Green walls, Landscape Futurism, landscapes, living walls, Natural Landscapes, Planting Design, rain gardens, Regenerative Planting, Smart Cities, Sustainability, Trees, Urban Landscapes, Vertical Greening Tagged with: , , , , , , , , , ,

November 2nd, 2018 by Mark Laurence

This article was first published in 2007 and has been updated 2018.

Future gardens will be an integral part of a living bio-system that is part house, part garden, an energy conserving and production environment.  It will also be a resource for water retention and cleansing, food production area, biomass and environmental haven. Above all, it must continue to be a sanctuary for the soul and from the world at large.

Why do I say this?  We cannot consider the future of gardens without accounting for climate change, which is now having a tangible impact on us all. The 2018 IPCC report says we have 12 years left before things reach the point of no return.  Whilst there is less talk now about global oil reserves peaking and that energy will be in increasingly short supply, it is still true that we have a long way to go before we have a fully renewable clean energy supply chain.  Whatever the outcome, big changes are on the way.

So when we look to the future of our gardens, it’s not so much a matter of what style or vogue will be popular, for such things come and go and in this context are not particularly relevant.  You might imagine it is a case of asking what will our climate be like and how will gardens adapt.  Yet to talk only of adapting plants to suit the changing conditions is actually to miss the main opportunity for our gardens to become part of the solution to global warming and perhaps, even a core part of our individual – and so collective – survival.

House-garden water capture, cleansing and re-use system

House-garden water capture, cleansing and re-use schematic.

That might sound ridiculous in the face of such monumental problems but I don’t think so.  If we all decided to make sure that in our personal lives, we were “carbon neutral” (or as close as possible) then energy demands and pollution from domestic use would drop considerably.  At a rough estimate, gardens in the UK occupy about 4500 km2 of land area (Davies
et al. 2009), mostly in urban and suburban areas.  This makes them a precious resource and opportunity for change on a big scale.

The first thing we have to do is start looking at our environment as a living bio-system; in this case, the house and garden, with its connections to the wider world (air, earth, wind, rain, food, materials, waste, energy, communications).  Think of the garden as one cell in a big organism. Almost all the elements this cell needs to survive are coming from outside, beyond its sphere of influence.  Yet the way that cell is constructed, used and connected to its immediate surrounds (garden) could, if designed correctly, reduce its dependency on external manmade systems. To decrease those we must increase our connectivity with natural systems, namely the sun, wind  and rain.  To put it more directly, with have to reduce to a minimum the inputs and outputs of our homes.

A fedge (fence-hedge) uses biomass grown in the garden to create new boundaries. good for wildlife

A fedge (fence-hedge) uses biomass grown in the garden to create new boundaries. Good for wildlife and resource conservation.

Those items which we cannot produce internally need to be sourced from outside as close to us as possible. Therefore neighbourhood and regional systems need strengthening to minimise production/transport costs. This is particularly true and desirable for food products, but also building materials etc. For that reason, even if we manage to live off-grid – the ultimate, but extreme, conclusion to this line of thought – we cannot do it all alone and live in splendid isolation, nor would most of us want to. Many bio-systems will only work efficiently when connected together to give sufficient inputs to allow them to function properly (for example, reed-bed sewerage systems). Local community-generated bio-systems are essential to a sustainable future.

The main areas which the outside garden spaces could deal with are:

  • Passive solar gain (microclimates)
  • Water saving and (grey water) cleansing
  • Waste recycling (composting)
  • Energy production/conservation
  • Increasing site biomass
  • Food production
  • Biophilic nurturing
  • Nature conservation/biodiversity

You may think this all sounds very philanthropic, but where is the incentive to expend all this time and money “greening up” our homes and gardens?  Some of the incentive will be economic; for example metered water users already consume about 15% less water than unmetered and government will gradually introduce a number of Carrot and Stick measures.  But as cost of pollution will have to be met by industry and so, by consumers, simple economics means that inevitably everything will get more expensive.  For many people, I suspect that having a lifestyle that gives independence and doesn’t add to pollution will become increasingly desirable, as we all witness first or second-hand the effects of climate change.  Whilst we all see the horrors of hurricanes and droughts in distant lands, at home (for me, the UK) we see increasingly severe flooding etc. right on our own doorstep.  Less dependency on outside systems will give increased sense of security in an uncertain world.

In all of this, beauty and relaxation will be paramount, so gardens will still fulfil this most traditional and personal of roles, giving us joy, relaxation and sanctuary.  For example, looking at a beautiful water system of rills and planted gravel filterbeds is made all the more exciting by knowing it has a useful function and is saving resources.

A rain garden which captures roof-water and allows it to infiltrate the ground

A rain garden which captures roof-water and allows it to infiltrate the ground

For these principles to be taken up by the average garden-owner and made successful, we must resolve two conflicting issues: the subject needs to be driven by a sense of fun, adventure and positive aspiration to really make a difference and yet we must also avoid the “dumbing-down” or over-simplification of a complex topic, something that can occur when it appears in magazines and TV shows.

An example might be solar panels: it would be wonderful to run your garden pond pump, shed, or garden office from solar panels – no cables to the house to bury, a good eco-friendly solution. But you have to balance that ideal with the cost of initial installation (probably greater than laying electric cables from the house), the limitations of supply and the increased maintenance that may be involved.  Having got your solar supply, you might be frustrated to find that you can’t charge your battery mower if you didn’t purchase a high enough generative capability.  This is typical of a fragmented approach to sustainability – it’s a start but not really useful just thinking of the power to your pond and ignoring that used within the house, or your car.

 

So where are we?  Standing on the threshold of an exciting new future, I would say.  Technology and information is available as never before, and hooking up to the IoT (internet of things) is great fun and useful too.  The brightness, however, is troubled by the looming stormclouds on the horizon and the knowledge that the societal cost of failure is high – and will be witnessed by ourselves but paid for by our children.

I do firmly believe that we can all make effective choices in what we do and in what we demand of the world, of business and our societies.  We have to make rational choices and sometimes temper our own personal indulgence.  Gas or electric patio heaters may be a nice luxury but the environmental damage is not justifiable.  Maybe a log burning fire basket is, provided we do other things to counter the carbon emissions, such as growing more bio-mass.  Extra woolly jumpers may simply be the best bet along with passive solar designed spaces!  Most issues simply come down to us making informed decisions and balancing personal ease with environmental sanity.

Remember, what sounds “eco” or fringe today, is going to be tomorrow’s norm.  Get out there, explore ideas and enjoy being the change!

Posted in Adaptive Planting, Climate Change, Design, design principles, Ecosystem Services, Edible Planting, Environment, Garden Design, green roof, Landscape Futurism, Planting Design, rain gardens, Smart Cities, Sustainability Tagged with: , , , , , , , , , ,

horticultural robot
August 23rd, 2016 by Mark Laurence

The way in which we design, create, maintain and use urban landscapes is likely to change radically in the next 15 years (in fact, modern society is in for overwhelming change).  Urbanisation, climate change and the rapid rise of technology and artificial intelligence (AI) will see to that. Don’t think that the rate of change will be the same as has occurred in the previous 15 years, for technological growth is on an exponential growth curve, not a linear one.  Cities and systems are becoming smart, connected to the Internet of Things and that is just for starters.  So how will this change the way we design and use our urban landscapes?

Firstly, we know that there is huge movement of populations from rural to urban life, especially in the developing worlds and most markedly in Asia.  This creates huge pressure for new urban infrastructure and this is not always well planned growth, especially in terms of forward thinking to account for future changes.  Nonetheless, it is happening and happening fast.  The UN expects 66% of the world’s population to be urban by 2050, by which time there will be 9bn of us – so 6bn in cities.  Mega-cities have to grow in a way that sustains huge numbers of people.

Secondly, climate change is also occurring at exponential rates, raising the difficulties of living in any environment but with especial problems for mega cities, most of which are in coastal regions and subject to rising sea levels and worsening weather patterns.  Cities are hotter than the surrounding land due to the nature of materials used, whilst heavy rainfall brings flash-flooding. In arid countries, built environments are in danger of becoming too hot for humans to inhabit. Cities will have to take on these challenges, generating micro-climate.

Thirdly, technological change is happening exponentially and this will impact what we do, how we live, how – if – we work and how we tackle the above problems.  Some view the challenges and changes with fear, thinking they will only exacerbate problems.  They could do, anything can be mismanaged (such as a planet) for example.  I foresee that technology is actually the only way we are going to get ourselves out of the mess we have created, the only thing that can act on the vast scale needed to re-balance an out-of-kilter Gaia.

When we take these three factors into account, we can see that the future of urban landscapes has to be so much more than the addition of the odd pocket-park here and there.  Landscapes have to mitigate the environmental factors, make huge mega-cities liveable for a population increasingly disconnected from nature and provide meaningful lives in an era when many of us may not work in the way we are used to.

A weedy landscape

Weedy and neglected landscape plantings are all too common. No-one wants to pay for maintenance

How will cities become smart and use this to better the environment?  If we are looking to increase the amount of urban landscaping significantly, then the first issue to tackle is cost of maintenance.  No one wants to pay for maintenance and often, no one does.  How many planted landscapes do you see smothered in weeds, wrecking or negating the designed purpose?  Or municipal plantings and car-parks where plants inevitably die and are never replaced, leaving huge gaps.  Shrubs hedge trimmed into amorphous shapes because that’s the quickest way to “maintain” them.  It’s a poor standard and it’s all we’re going to get – no-one is going to pay for trained horticulturalists to do something better.

landscape lobotomy

Landscape lobotomy: maintenance is the quickest, cheapest possible

Yet there is an interesting possibility – automation is likely to remove nearly 50% of jobs in the next decade, especially low-skilled or repetitive ones.  In the landscape trade, there are already semi-autonomous strimmers and grass-cutters on the market, how long before we have horticultural robots maintaining our landscapes?  All the technology is already here, prices are falling and an uplink to an AI would identify every weed known, give the correct procedures, know how and when to prune every plant in common cultivation. Robots would work long hours without tea breaks!  If basic maintenance getters a lot cheaper, we can have more landscape and such robots would be cheaper, eventually.  Living walls would be a prime candidate, with a simple maintenance cradle (much like a 3D printer head) that crosses the wall with a maintenance bot on it.  I’ve seen so many potential living wall projects fall at the maintenance-cost hurdle.  In such a scenario, displaced maintenance crew can retrain as bot-supervisors or true horticulturalist for private clients.

horticultural robot

Horticultural robots will make maintenance cheaper and more effective.

We’re going to have to do more than just make maintenance affordable; rather, that is the factor that releases the possibility to do more urban landscaping.  Many of the elements we need to put in place are already in existence and being used, but we need to join the dots and think holistically.  For example, green roofs are seen as a separate trade from green (I prefer living) walls.  Instead, we need to be talking of biological membranes (biomembranes) for buildings, a whole-system concept, where the living skin regulates the internal environment, filters pollution in both directions, dealing with generation of energy, cooling, clean air and water. Living walls that currently use potable water for irrigation when they could be cleaning up the used greywater that all buildings generate is another example.

building biomembrane

Building Biomembranes regulate building ecology and create vertical landscapes

Systems that provide services that are of consequence to the functioning of a building, street, or neighbourhood need careful management and control, much of which will become automated.  In just the last year, for example, new irrigation controllers have come on the market which not only are connected to you via internet, they also connect to the nearest weather station and adjust their regime according to the conditions.  I use these for living walls; I do not advocate any irrigation for horizontal landscapes in temperate climates.  But things will move beyond this, with AI monitoring ground moisture levels and moving harvested rainwater from one holding system out to another part of the city where it is needed.  And urban farming – especially vertical – will be a large part of mega-city greening, although it might not be on display.  Sophisticated hydroponic systems are springing up in warehouses and roof-top polytunnels all over.  Such food can and should be organic, local, healthy, nutritious.

A smartly connected landscape means we can maximize the benefit it gives to the people who live, work or pass through it.  With the majority of people living in urban mega cities, we have to create an environment that is fit for ultra-dense urban living.  As these metropolis’ grow, people will have less and less daily contact with Nature, which is not good for our deeper wellbeing.  Biophilia is our innate need for contact with the natural world: plants, trees, flowers, insects, sunlight, water, earth.  A concrete jungle is not a substitute for the real thing but we mostly won’t have time to “get out there” and experience wild Nature.

I think inner city pollution will blow over – excuse the pun- in the next 5-10 years as we start a massive switch over to electric transport, most of it driverless.  In fact, drone taxis are already under development and as buildings and living habitats reach skyward we can expect the landscape to move with them.  It will become commonplace to have high-level dronepads – even private ones.  Some people might not even go down to the ground much!  So landscapes and biophilia must come to them.  Fortunately, there is a rash of building-integrated vegetation going on and I see this trend increasing.  Incidentally, if you wanted more good reasons for using bots to maintain planting, imagine working on living walls or trees that are 50 stories up!

As for the wider environment and the looming crisis of climate change, I can only hope that emerging nanotechnologies give us the tools to clean up our act and neutralise the positive feedback loops we are creating.  Scientists are already working on nanotechnologies which capture and convert carbon into useful materials and one day such microscopic machines may roam our land and seas, removing plastics and other dangerous waste.  If this is done at a molecular level, we turn problems into resources.  We’ll be printing our houses (already being tested) compounds made from waste materials but without the current worries of using say, bricks made from recycled plastic which off-gas VOCs.  We can only hope these technologies emerge before it’s too late to save the climate in a state that we can survive in.

 

So the next 10-15 years are going to see change at an unprecedented rate and it may not all be a smooth ride.  I am excited by it however and think that there is much to be done to ensure that we create new urban environments worthy of habitation and that we take care of all environments and indeed the whole planet.  Smart cities are coming and at their best they could loosen our imaginations and liberate us from a monotonous life of work and stress.  Let’s make that the scenario that happens…

Posted in Biophilia, Climate Change, Design, Ecosystem Services, Environment, Landscape Futurism, landscapes, living walls, Smart Cities, Sustainability, Urban Landscapes, Vertical Greening Tagged with: , , , , , , , , , , , , , , ,