Category: Garden Design

Adaptive landscape design
April 25th, 2019 by Mark Laurence

The world is finally, at the last minute, waking up to the impending effects and consequences of climate change. In the scramble to work out we must do (apart from the obvious cessation of burning fossil fuels), one thing, one factor is looming large: we need to put carbon back into the soil, where it can be stored indefinitely, and we need to reforest the Earth. Much of this is in the agricultural realm but there is a huge amount that can – and must – be done within the landscape and horticultural sectors.


Horticulture has a MISSION, it just doesn’t realise it yet

At the centre of this is good soil husbandry, something that we have largely forgotten about. Modern agriculture bypasses all need of soil health by chemically feeding crops; no need for microbes, nutrients, humus, mycelium or earthworms. Chemical fertilisers and herbicides bypass the lot. Most of our soils now are depleted to the point of useless by chemical farming, exacerbated by the tradition of ploughing, which causes erosion from rain and enables much of the soil carbon to move back into the atmosphere.

So whilst we need current global models of food production to transform into regenerative agriculture and agroforestry, we also need to look at our urban landscapes and gardens, and create a new design ethic, a new paradigm, even. I can’t deal here with agriculture but I have been thinking long and hard on what the landscape and horticulture trades need to do; fortunately, I believe there is a lot that we can do.

We need to envelope our existing horticulture trade within ecology, to create an “environmental horticulture” You could also call it ecological, resilience or regenerative horticulture. We (those of us in the trade) know that as a profession, the training of both horticulture (growing) and landscape (doing) are in decline. Horticultural colleges have shrinking budgets and often get the less ambitious or capable students; after all, who is inspired by the prospect of strimming verges or hedge-trimming another unloved carparking lot? Yet last year’s report by the Ornamental Horticulture Roundtable Group valued horticulture at £24.2 billion in GDP in 2017. That’s not inconsequential, yet it goes unrecognised. Fortunately, there is a way to make it much more enticing to prospective students.

Horticulture has a MISSION, it just doesn’t realise it yet. That mission is to adapt our urban landscapes and gardens to cope with climate change, to mitigate temperatures, water flows, to grow biomass and regenerate soils back to health. Healthy soil is the foundation of life, of all life, including our own. Good soil holds fertility, water and carbon. Yet who amongst us now knows much of soil science? Who designs landscapes as ecologies, as “novel ecosystems”, who chooses plants because they have these abilities, not just for pretty flowers? Who designs plantings for their biomass harvest, for creating mulches to feed the soil?

In this respect, I don’t believe it’s necessary – or right, in fact – to work with native plants only. What is native? What was native? What was here 11,700 years ago when the last glacial period ended and the glaciers retreated? Flora and fauna move around the globe all the time, they are opportunistic, not fixed permanently into some tightly integrated ecosystem. We know there is no “ecological climax”, no ultimate ecosystem for any given place. As temperatures rise, climate zones are now shifting away from the equator quicker than Nature can keep up, although it’ll get there eventually. Maybe we help nature, rather than interfere when we bring in exotic plants that naturalise. Maybe those plants are the start of new ecologies that will adapt to the rapid changes that this climate emergency is bringing us. If plants do well, we need to understand how to enhance and build new ecologies with them. This is how we adapt, how we survive and how we rectify the damage we have done as a species; not by returning to some pristine “before” (which doesn’t exist) but by assisting Nature to heal and adapt. The Earth will do this all by itself, and has done so many times. It doesn’t mind if it takes thousands, or even hundreds of thousands of years to adapt. But we do; we can’t wait that long.

So horticulture needs to stop growing pansies in peat with unrecyclable plastic trays and start sorting out which plants really matter for our future; which ones contribute to new and existing ecologies, which ones are good for biomass, which ones contribute to soil health, which ones give us ecosystem services. We should not enhance one environment at the expense of another.

That’s a very-near future profession of trained eco-warriors, soil saviours, tree patriots and landscape lovers. It needs people who understand soil, who know how to design and use sensors, data and the internet of things, people who see what’s coming and how to mitigate and reverse negative effects, people who really know how to design and install green infrastructure and future automated robotic maintenance systems. Our landscapes can grow food in amongst all the beauty, with urban food forests. We need new knowledge built on old and we need passion, commitment. A wise government would fund this for the returns will be numerous.

This is the enlightenment, that out of dire stress and trouble, we could really learn how to value, connect with and protect this crazy, beautiful world within which we live. Or we can do nothing and watch it all go to hell. I know which I’ll be doing.

Posted in Adaptive Planting, Biophilia, Climate Change, Design, Ecosystem Services, Edible Planting, Environment, Garden Design, green roof, Green walls, Landscape Futurism, landscapes, living walls, Natural Landscapes, Planting Design, rain gardens, Regenerative Planting, Smart Cities, Sustainability, Trees, Urban Landscapes, Vertical Greening Tagged with: , , , , , , , , , ,

Children and water, Boston
January 30th, 2019 by Mark Laurence

The safety of children and water is potentially a controversial issue and I want to make it clear from the start that these are genuine thoughts, with genuine intent but please don’t try and hold me liable for any disasters or accidents that may befall you or your loved ones. I cannot be responsible for your life and any decisions you make on this issue are yours alone. I naturally hope and intend that only good and positive benefit can come from this writing.

Children have an almost universal fascination with water, and parents an equally almost universal fear of it, or of their children being near it. We have all heard the horror stories of children drowning in a pond, or even a shallow puddle and our hearts go out to those unfortunate few who have suffered such a fate.

children enjoying the water

Children enjoying the water

But we seem to live in a fear-driven compensation culture, which stifles creativity or adventure because of the risk of hurt. Authorities and companies cannot afford to take risks, or allow other to take them. Consequentially, more and more things get banned in the interests of public safety. The world may be safer as a result but it is certainly blander.

As a young child I would walk the suburban mile or so to school on my own, ride my bike to visit friends, play down at the dump, swim in the sea and generally have freedoms many children are not now able to experience. But creative play is an essential part of a child’s development and must be catered for somehow. A love and respect of water should be encouraged and this requires contact and familiarity with it. I believe that those most at risk are those who do not appreciate the dangers and those who are too young to.

A burst watermain in Iraq

Out of the disaster of the Iraq war, this burst water main provides a moment of joy for children and adults alike.

It is true, of course, that much of this familiarity, or lack of, will be caused by the geography of your environment. If you don’t have water in daily proximity, it is hard to become familiar with it. If you don’t see with your own eyes how a little stream can become a raging torrent after a downpour, then you will not be aware of the potential danger. Knowing the dangers brings about respect, gives us boundaries beyond which we know that things aren’t safe. In urban areas, the increasing use of WSUDs (water sensitive urban design) in the form of swales and rain gardens is a positive development.

There’s another good reason for us to have regular contact with water and that is a biophilic one. Water is a vital element, which, through modern living, we now tend to regard as no more than a right of utility. But water is the life force of the planet, and so of ourselves. Why else would we want it in our gardens? It soothes us, distracts us from our cares, puts us in touch with those deeper fundamentals of life, if we but let it. Children who experience this often can only be better off for it.

Children playing in a rain garden
Children playing in a rain garden in their family home. When dry, this is empty.

So if I’ve convinced you that it’s good for children to experience water, let’s think about how we might do so with some safety. First of all, young children should be supervised by an adult or responsible elder child, that goes without saying. I don’t advocate that you leave them alone.
I don’t know if there are any statistics available as to the ages of children that have accidents with water, but parental sense will tell us all that children under five have little comprehension of danger and must be watched very carefully, as must those of all ages with special needs. Water features should perhaps be fenced off while children are in their early years.

If there’s not much you can do about water in your wider environment, then you can perhaps create a feature in your own garden.

pond profile showing gentle slopes

This drawing of a stream cross-section could also be for a small pond. Pebbles and shingle make a good base, which the children can play with. Shallow water with gentle slopes mean that if they fall over, they can stand up and climb out.

Steep sides are the most dangerous aspect of a water feature, preventing children (and animals) from being able to stand up or climb out.

Loose paving on the edges of ponds is another risk factor; use only large slabs or stones and make sure that they have only a small percentage of overhang, and are securely cemented in place. Better yet, use a pond-edge design style which doesn’t use paving in this manner at all.

safe play with water

A reminder of what it’s all about – fun! Don’t do this on paving which may become slippery and prevent algal build-up.

With gently sloping sides, layers of subsoil, gravel or shingle will protect the pond liner and give good grip for feet and hands – bare liner tends to be slippery and is more vulnerable to damage. Good construction helps all round, although that is not the subject of this article. If you have an overhanging deck, make sure the water is not too deep at this point and that children can’t get trapped underneath it. Metal or plastic grids can also be built into a pond, sitting just below the water level. These need careful thought as to their siting as they must take the weight of a person without breaking. The danger is these can look very industrial.

As a final thought, if you want moving water but don’t want the depth of a pond, consider a stream garden, where water just flows along a shallow water-course. There is no pond as such and the water just disappears underground into a hidden sump tank, which houses the pump and which is inaccessible..

a stream garden

This stream feature is used by children – the water barely laps their ankles. Stones are moved, small dams made…

In conclusion, there are many things that children learn from playing with water: self confidence, balance, awareness of danger, responsibility, experience of wildlife and of Nature’s rhythms. A careful and reasoned approach is what is required for allow a child safe, creative exploration.

And of course, we adults are all children at heart, too. Play safe.


First published in 2009, updated 2019

Posted in Biophilia, Design, Garden Design, landscapes, Ponds, rain gardens, Water Gardens Tagged with: , , , , , , , ,

January 24th, 2019 by Mark Laurence
The newly installed raingarden flowing during a downpour
The newly installed raingarden flowing during a downpour

Rain gardens are a relatively new approach on how to deal with water in the environment. In the last 10-15 years, there has been a big rise in the use of SUDS (sustainable urban drainage systems), the practice of delaying the entry of rainwater into the drainage system by the use of swales, ditches and ponds. However, this is generally the domain of engineers who are mostly concerned with their pipework; rain gardens, on the other hand, do the same thing, but are equally concerned with aesthetics and ecology – and so are far more exciting. Easily applied to the domestic situation, but the concept works just as well in urban and commercial design. In fact, WSUD – Water Sensative Urban Design – looks set to take on this wider role in the municipal environment, possibly replacing SUDS.

Having built many water gardens in my life, I decided (in 2010) it was time to build a rain garden in my own home, where I could enjoy it and also monitor its performance. These pictures show the just-completed garden, only a few months old; it also rained right on cue and appeared to be working well!

The coil is an old water heater pipe and acts as a fountain - this pond has always been there.
The coil is an old water heater pipe and acts as a fountain – this pond has always been there.

So what is the “philosophy” of a rain garden: why build one? Well, flood prevention is one answer; if you have ever experienced floods in your area, you have directly or indirectly contributed to them. If the rain didn’t fall on your actual roof, it fell on part of the urban fabric that has been built to support you. Another answer is to re-charge ground water supplies; many urban areas have groundwater levels that are dropping due to the fact that rain cannot permeate the land where it falls (95% of urban land is impermeable). Water tables are also dropping because we are abstracting water far more quickly than it is being replenished.

Rain gardens are a great way to re-connect with nature, opening you up to the experience of natural rhythms and process. It will sit there quietly in hot weather, dry, yet still a micro climate for flora and fauna that like a little extra moisture, in the lowest parts, providing free drainage to the drier areas. When it rains, though, the garden comes to life; water from the roof of your house, instead of disappearing down the drain, starts running into the areas of dips and dry ponds you have created, perhaps having topped up your rainwater butts first. Gradually pools start appearing and maybe in a heavy downpour, water starts running between them. How long it then takes to dissipate will depend upon your soil type; I’m on an alluvial soil, so it is very free draining; on heavy clay it might take days for the water to disperse, and this might mostly be from evaporation. This is good too as it helps re-charge the local hydrological cycle, which is also severly lacking sufficient moisture content, and may well be a significant but overlooked driver of climate change. If you have limited space or can’t allow water to rise beyond a certain level (after all, you don’t want to move the flood potential from somewhere further away, to your own home!), then you might need an overflow which puts any surplus water back to drain, or perhaps (and preferably) to another part of the garden. You will have still considerably delayed the timing of water going to drain, as well as the volume.

Here you can see the disconnected downpipe now feeding the chute
Here you can see the disconnected downpipe now feeding the chute

In my garden, I have disconnected one of the main roof downpipes (which it turned out was blocked) and used an old steel channel I found when they demolished the adjacent dairy. We have old cast-iron downpipes so I bought a 90° bend and fitted that to direct the water into the chute. I then dug a channel and partly lined the bottom with plastic, because our ground is very free draining and I wanted to connect this to an existing small water feature, so that this was topped up by rainfall. Surplus water is then dispersed to the sides, through the planting. If I were designing this from scratch, I would put the pond before the raingarden, so this was topped up first. Having said that, this section of the garden has always been incredibly dry and I’m hoping that the ground will, over time, recharge itself and things will grow better. This dryness is evidenced by the fact that we have a young fig growing well, right by the downpipe.

In periods of heavy and prolonged downpours, it may be that the pond will overflow; this will happen at the back and will disperse out away from the house under the bushes. With our soil, I don’t see the need for any further overflow drainage.

The roof section that feeds this downpipe is about 50m2, south facing. We get on average 50cm rain per year, so this should capture 25m3/year. This morning in light/medium rainfall, the chute was delivering 3 litres/minute (nowhere near the rate of a hosepipe). The rain garden is about four metres long and I’m not sure how to measure the drainage rate of soil, apart from having the plasticity index measured in a lab but over time I will use these figures to try and calculate how much water is passing through the system; in theory 25m3/year.


Children playing in a rain garden
Children playing in a rain garden I designed in 2010

I was sent this picture (right) of a rain garden I designed for a client around the same time that I made mine. What a great picture, it gets right to the heart for so many issues about life, play, learning, experience, the elements. We tend to over-design our environments for safety, yet end up sanitizing them to the point where life becomes uneventful and we loose the richness and diversity that being connected to nature gives us. On a rainy day most kids are sat in front of the TV; I think this as a much better option…

The soil in this raingarden is a heavy clay and so holds the water for longer. It is bigger than mine and would need to be to increase the percolation area. You can also see that mine is more planted and this is again a condition of its function – theirs was designed to be a play space for the children (which is why I’m so pleased that it is successful). When they have grown up, it can be planted more intensely. It also created a feature in an otherwise rather awkward, narrow, North-facing space.

Rainwater management isn’t just for large commercial or public-realm sites, it can be done in your own garden too, with multiple benefits to environment, garden, wildlife and of course, you.


First published in 2011

Posted in Climate Change, Garden Design, landscapes, My Garden, rain gardens, Water Gardens Tagged with: , , , , ,

The dry garden - created over the remains of an old driveway
January 24th, 2019 by Mark Laurence

The emergence of the idea of resilient planting is a response to a number of different pressures which all have one underlying cause – climate change. Whatever the cause – and I’ll get on to that later – I see it as the most exciting change to the way we design our gardens and landscapes.

Last year we had one of the hottest summers ever recorded and it serves to heighten awareness of the vulnerability of some plants and garden styles to the increasingly erratic climate we are dealing with in the UK. We seem to swing from one extreme to the other, and this is only likely to get worse. I’ve witnessed a number of stressed plants in my own garden but feel relieved that most have thrived throughout the heat, without any watering on my part. this is down to soil, drainage, micro-climate and above all, plant choice.

Ballota pseudodictamus, a Mediterranean sub-shrub with grey, felted leaves, loved by bees.

Ballota pseudodictamnus, a Mediterranean sub-shrub with grey, felted leaves, loved by bees.

We garden on an alluvial coastal plain, and are fortunate to have a very free-draining soil overlying a clay substrate.  It gives us fertile soil, great drainage and a moist sub-strata within the reach of most plants (many areas around us are of much heavier clay).  A large section of our front area used to be a paddock with a rubble driveway and this now forms the basis of much of my dry garden.  Some rubble was removed and topsoil added, but a lot of areas are still rubble-strewn, not unlike some rocky soils.  The down side of all this is super-fertility and a soil filled with weed seeds, bindweed and couch.  To be honest, I’d have preferred a poorer soil.

When thinking of resilient planting, we have to match our plant type to the environment; we also have to think, long-term, of how our environment might change in the coming years.  This is not so important when dealing with short-lived plants such as herbs, sub-shrubs and perennials, but is super important when dealing with long-term structures, especially trees. This is doubly true when we look at the potentially disastrous effects of imported pests and diseases that we are having to content with.  Climate change, especially milder winters, mean that exotic pests are happily making a home here and wreaking an unintentional devastation to trees such as our native ash and even oak.

Phlomis russeliana, after flowering. The stem leaves have since dropped, leaving an brown, architectural structure.

Phlomis russeliana, after flowering. The stem leaves have since dropped, leaving a brown, architectural structure.

No-one can say exactly which way our climate will go as the world hots up; we know we (in the UK) will always be maritime, because that can’t change, but as the Jet stream (wind currents) varies and the Gulf stream (water currents) weakens, we don’t really know what kind of climate we’ll end up with.  We can only plan for extremes, and select our planting choices with that in mind.  In this respect, the “new perennial” or “naturalistic” planting isn’t necessarily going to be the toughest choice as they come from a continental climate which generally have hot summers and very cold winters.  Prairie plants tend to get out-competed here with our mild winters and grasses and forbs that can grow all year round, given mild conditions. The aforementioned fertility (at least in my garden’s case) also doesn’t help as wildflower meadows/prairies tend to have poor soil which helps keep the grasses from assuming dominance. During the heat-stressed weeks, I noticed that where I have perennials like Echinacea and Veronicastrum (in moister areas than the dry garden), they suffered from the lack of water. which resulted in the Veronacastrum flower spikes looking stunted.  for more moisture-demanding planting, sub-surface irrigation using harvested rainwater might become a necessity.

To my mind though, if you need irrigation you’re working with the wrong plant-types, trying to grow plants that can’t naturally cope with the conditions that predominate.  Save your water for the newly planted and the vegetable plot and for this, consider rainwater harvesting, rather than mains.  When selecting plants, see what grows well, both of native and non-native origins and build adaptive micro-ecologies.  Our climate is changing faster than the current ecosystems and ecologies can cope with and we need to do whatever we can to build new planting that is of maximum benefit to local wildlife, as well as ourselves.

It’s an exciting time to be a gardener, for there is no place now for the self-indulgence and nature-control-freakishness of the past. What there is a the possibility of co-creating new ecologies that adapt to changes, halt decline and make our local wildlife vibrant and healthy.

Along the way, we can create the most stunning of gardens!

Posted in Adaptive Planting, Biophilia, Climate Change, Dry Garden, Ecosystem Services, Environment, Garden Design, landscapes, My Garden, Natural Landscapes, Planting Design, Regenerative Planting, Sustainability Tagged with: , , , , , , ,

Vertical flow pond biofilter
January 21st, 2019 by Mark Laurence

The maintenance of ponds is the one thing that people seem to be the most uncertain about – it seems shrouded in myth and confusion.

A biological filter can be as simple and as beautiful as this.
A biological filter can be as simple and as beautiful as this.A biological filter can be as simple and as beautiful as this.

Some of this is basic ignorance of simple biological structures but this is enhanced, in my view, by the profession’s over-mechanised solutions to obtaining clear water. There is also a tendency to think that a bottle of some substance can perform miracles and solve unclean water problems – but it can’t.

First lets be clear (pun intended) there is a difference between clean and clear water. A pond’s biological functioning might be quite happy with water that is healthy but carries an amount of suspended solids. The health of water is far more dependent upon keeping levels of Nitrites, Nitrates and Ammonia low; these have nothing to do with water clarity.

Our aesthetic taste demands clear water, however, and it is certainly true that pure, clean water is always the most beautiful to behold.

To obtain and keep clean and clear water, we must keep the pond in balance, so a simple understanding of water balance is useful. This involves two things; mechanical filtration to remove solids, and bacterial action to remove pollutants.

First, let’s dispel a few commonly held myths:

  • You need a magic filter box with lots of plumbing entrails
  • You need something called an Ultra Violet filter
  • You need to test the water frequently
  • You need to change a percentage of the water at intervals

A filter box gives some mechanical filtration of solids and creates a home for micro organisms to do their work. It is these bacteria that convert Ammonia into Nitrites then into Nitrates, and they are naturally existing in any aquatic ecosystem. Thus it is not the filter box that does the majority of the work but bacteria already present in the pond.

An Ultra Violet filter kills algae, which cause green water. Algae feed on nutrients available in the water – remove the nutrients and you solve the problem at source. This may be an oversimplification, but it is fundamentally true. A UV filter is therefore treating the symptoms, not the cause.

I have rarely found a situation where tests have told me anything that my eye has not. That’s not to say that tests do not have their uses but I would suggest that you can observe when a system is out of sorts. Nature is incredibly good at correcting imbalances, given a chance.

Ponds are an open system and will always lose water through evaporation, so some new water is always going to be added via the garden hose or a top-up system, preferably from harvested rainfall. Water change regimes are quite unnecessary and probably unhelpful to establishing a balanced system, which has to start again each time this is done.

It is true, however, that small garden ponds are often unstable in terms of quarter quality, for the following reasons:

  • The water body is too small to maintain a stable and permanent ecosystem
  • Water levels and temperatures fluctuate widely – small isolated ponds would naturally dry up
  • Fish stocking levels are usually too high, creating biological overload
  • There are insufficient plants and bacteria-rich medium to ensure a healthy biological cycle
This small rill incorporates a bio-filter alongside the wall. Spouts pour water into the filter, where it is cleansed before being passed back into the rill.
This small rill incorporates a bio-filter alongside the wall. Chutes return water to the rill, having been drawn down through the biofilter.

All this adds up to one thing: excessive nutrients in water, leading to algae growth, lack of oxygen, cloudy water – in the end this leads to eutrophication.

You have to remember that the average sized garden pond is a mere puddle in Nature’s terms. Ponds of that size would likely be impermanent and support little life, other than in a temporary or cyclical manner. In summer a small pond would dry up unless it were fed by a stream or high water table. If it were fed by a stream, then the pond wouldn’t be a pond – it would be a bulge in the water course.

We must accept, then, that the garden pond is a highly artificial environment, which needs some help in order to remain attractive to us, and to its inhabitants. What form should that help take? Where space is severely restricted, a filter box may be the answer, for it crams a lot of bacterial housing into a small space.

The same can be done, however, by the use of natural biological filtration, which is designed to be an attractive feature of the water garden itself, rather than a utilitarian box than must be hidden. In its simplest form, this can be no more than a gravel filter bed built into a stream which feeds the pond. Planted with suitable aquatic plants, this can be a major feature and is also good where hungry fish tend to devour plants placed in the main pond.

This filter bed is built into a stream feeding to a pond

This filter bed is built into a stream, flowing, right to left, which is pumped from a pond, to which it returns. The filter becomes an integral part of the overall design, forming an important aesthetic feature.

How big should such a feature be? Natural filtration is an inexact science, so the bigger, the better. A surface area of one quarter to one third of the pond surface area is a good guide. A more intensive system uses a vertical, rather than horizontal flow. These have a much higher cleansing rate and so can be made smaller, thus saving space. However, they are somewhat more complicated to construct. These operate on a similar principle to the plastic filter box but again, they have a huge aesthetic advantage.

I have hardly scratched the surface of this fascinating subject, but the main point is that you are helping Nature to do what she does already, rather than taking control with technology.


First published in 2008

Posted in Design, Ecosystem Services, Garden Design, Ponds, Water Gardens Tagged with: , , , ,

A good transitional entrance space between house and garden
November 6th, 2018 by Mark Laurence

This article was first published in 2009.

There are few aspects of our built environment more emotive that that of the entrance door. It can mean shelter, warmth, food, security, friendship. All of life involves the act of entrance, from the earliest caveman to the present day.

How many times per day do we go in and out of buildings and our homes? We scarcely stop to think about it, yet entrances all convey subconscious messages which can affect us on deeper levels, for good or ill. Some doorways are enticing, friendly; some oppressive; some just dingy and neglected. Most are probably functional and non-descript, of itself a message just as powerful as the others.

We move from our homes to cars, to shops, offices or other houses. Each time we do this we experience a subtle shift in light levels, humidity, warmth, expectations and intentions. Our mood shifts and adjusts with our purpose and our expectations. Going to work we might subconsciously don a mask as we enter busy offices or a large railway station. Arriving home again, we relax as we walk up the path, shedding the mask as we close the door behind us.

A Wisteria-covered pergola gives a deep connection

A Wisteria-covered pergola gives a deep connection between the kitchen door, driveway, outhouse and rear garden

The physical structure of a building and its entrances tell us what to expect: grand doorways with tall columns tell us of status, power and authority. Grim entrances to prisons have an unmistakable message. In public buildings especially, proportion is everything, where tall ceilings and doors give formality. By contrast a humble cottage door or an old garden gate recessed into an ivy-covered wall might look secretive or inviting, asking us to explore the spaces beyond. What do the doors to our homes tell us? Most front doors are rather bland or feel inauthentic, for example the many mock-Georgian style doors on modern houses offer us nothing more than a thin veil of pseudo-style applied over a nondescript structure.

In the home, layout and door position is also important. The front door is our formal entrance to the world, the back for our private comings and goings. Yet how many house layouts truly observe such simple criteria? Some houses have both the front and back doors equally visible, with no clear indication as to which is which. Or the back door opens onto a narrow side passage, rather than directly onto the garden. Many of us live with awkward house layouts.

Overcoming the problem of awkward flow is, however, fundamental to the harmonious functioning of a house and its occupants. On occasions when looking at a house and the way it connects to the garden, I have recommended the re-location of the rear door. It sounds extreme but I have had several clients who were very glad they took my advice. Fundamental problems sometimes need bold solutions and the picture below is one such example.  Here, a new connection from kitchen into the garden via a (new) seating area made a big transformation.

French doors give connection to the garden

New French doors give connection to the garden, creating a new experience in this house

French or patio doors aren’t always the bonus they’re meant to be, though. Sometimes these confuse the traffic-flow and can destroy the usability of the room in which they occur. Lines of movement (inside or out) should not cut through a still-point. Of course, sliding doors which truly open up the house and invite a more relaxed transition can be fantastic. It’s all down to careful thought and good design.

So much for placement, what of the physical act of entering and leaving? All too often it’s a bit, well, abrupt. Ground and wall meet at the perpendicular, at which point, there’s a door. You open it, go in or out. That’s it – all over with. Yet it takes a moment to adjust, from one environment to another, both physically (light and warmth) and mentally (tasks, purpose, relaxation). Ideally therefore, we need a space in which to adjust, to experience transition, even if it’s for just one second. That space becomes an area that is “in-between” – it could be a porch to the front entrance or a pergola to the rear. A covered walkway might lead to the car, a path or set of steps might connect us to the garden.

How this transitional space is styled will of course depend upon its use. For a front door, nothing beats a good porch or recessed doorway. The visitor waits in this transitional space for the door to be opened, the owner pauses to find their keys. Both might be glad to be out of the rain, or bathed in a welcoming light at night. Where possible, the porch should be preceded in the approach by a path and suitable planting, building up the sense of arrival. In these days of open-plan front gardens, attention to these simple things can make a big difference.

Where a door fronts onto a street, a roof canopy over the door and some tubs or wall planters might serve. A step up onto a different level might be frowned upon by planners, but where disabled access is not an issue, a step up, off the pavement can make a huge difference – suddenly we are in stasis, out of the busy flow of the main path.

To the rear, where a door connects you to the garden, there are multiple ways to enrich the experience of transition. A pergola might frame a door and be part of a larger structure which defines an outdoor room. Conservatories and lean-tos might be the connecting space. Loggias and verandas make a great transitional area. Where the back door has to be to the side of the house, perhaps make a shady passage covered by pergola, with ferns, foliage and climbers to give dappled light. Choose a good brick or stone and make it feel like a tunnel leading out into the garden proper.

So think about the way you move in and out of your house. Imagine the use, mood and character you wish to create and then find the structure to answer that need. A good entrance can really root a building into its environment and enhance the user experience considerably. If a building feels settled, like it belongs, you will too. Don’t put up with the merely adequate – enrich that transitional moment and rediscover the lost art of entrance.

Posted in Design, design principles, Garden Design, landscapes, Uncategorized, Urban Landscapes Tagged with: , , , , , , ,

November 2nd, 2018 by Mark Laurence

This article was first published in 2007 and has been updated 2018.

Future gardens will be an integral part of a living bio-system that is part house, part garden, an energy conserving and production environment.  It will also be a resource for water retention and cleansing, food production area, biomass and environmental haven. Above all, it must continue to be a sanctuary for the soul and from the world at large.

Why do I say this?  We cannot consider the future of gardens without accounting for climate change, which is now having a tangible impact on us all. The 2018 IPCC report says we have 12 years left before things reach the point of no return.  Whilst there is less talk now about global oil reserves peaking and that energy will be in increasingly short supply, it is still true that we have a long way to go before we have a fully renewable clean energy supply chain.  Whatever the outcome, big changes are on the way.

So when we look to the future of our gardens, it’s not so much a matter of what style or vogue will be popular, for such things come and go and in this context are not particularly relevant.  You might imagine it is a case of asking what will our climate be like and how will gardens adapt.  Yet to talk only of adapting plants to suit the changing conditions is actually to miss the main opportunity for our gardens to become part of the solution to global warming and perhaps, even a core part of our individual – and so collective – survival.

House-garden water capture, cleansing and re-use system

House-garden water capture, cleansing and re-use schematic.

That might sound ridiculous in the face of such monumental problems but I don’t think so.  If we all decided to make sure that in our personal lives, we were “carbon neutral” (or as close as possible) then energy demands and pollution from domestic use would drop considerably.  At a rough estimate, gardens in the UK occupy about 4500 km2 of land area (Davies
et al. 2009), mostly in urban and suburban areas.  This makes them a precious resource and opportunity for change on a big scale.

The first thing we have to do is start looking at our environment as a living bio-system; in this case, the house and garden, with its connections to the wider world (air, earth, wind, rain, food, materials, waste, energy, communications).  Think of the garden as one cell in a big organism. Almost all the elements this cell needs to survive are coming from outside, beyond its sphere of influence.  Yet the way that cell is constructed, used and connected to its immediate surrounds (garden) could, if designed correctly, reduce its dependency on external manmade systems. To decrease those we must increase our connectivity with natural systems, namely the sun, wind  and rain.  To put it more directly, with have to reduce to a minimum the inputs and outputs of our homes.

A fedge (fence-hedge) uses biomass grown in the garden to create new boundaries. good for wildlife

A fedge (fence-hedge) uses biomass grown in the garden to create new boundaries. Good for wildlife and resource conservation.

Those items which we cannot produce internally need to be sourced from outside as close to us as possible. Therefore neighbourhood and regional systems need strengthening to minimise production/transport costs. This is particularly true and desirable for food products, but also building materials etc. For that reason, even if we manage to live off-grid – the ultimate, but extreme, conclusion to this line of thought – we cannot do it all alone and live in splendid isolation, nor would most of us want to. Many bio-systems will only work efficiently when connected together to give sufficient inputs to allow them to function properly (for example, reed-bed sewerage systems). Local community-generated bio-systems are essential to a sustainable future.

The main areas which the outside garden spaces could deal with are:

  • Passive solar gain (microclimates)
  • Water saving and (grey water) cleansing
  • Waste recycling (composting)
  • Energy production/conservation
  • Increasing site biomass
  • Food production
  • Biophilic nurturing
  • Nature conservation/biodiversity

You may think this all sounds very philanthropic, but where is the incentive to expend all this time and money “greening up” our homes and gardens?  Some of the incentive will be economic; for example metered water users already consume about 15% less water than unmetered and government will gradually introduce a number of Carrot and Stick measures.  But as cost of pollution will have to be met by industry and so, by consumers, simple economics means that inevitably everything will get more expensive.  For many people, I suspect that having a lifestyle that gives independence and doesn’t add to pollution will become increasingly desirable, as we all witness first or second-hand the effects of climate change.  Whilst we all see the horrors of hurricanes and droughts in distant lands, at home (for me, the UK) we see increasingly severe flooding etc. right on our own doorstep.  Less dependency on outside systems will give increased sense of security in an uncertain world.

In all of this, beauty and relaxation will be paramount, so gardens will still fulfil this most traditional and personal of roles, giving us joy, relaxation and sanctuary.  For example, looking at a beautiful water system of rills and planted gravel filterbeds is made all the more exciting by knowing it has a useful function and is saving resources.

A rain garden which captures roof-water and allows it to infiltrate the ground

A rain garden which captures roof-water and allows it to infiltrate the ground

For these principles to be taken up by the average garden-owner and made successful, we must resolve two conflicting issues: the subject needs to be driven by a sense of fun, adventure and positive aspiration to really make a difference and yet we must also avoid the “dumbing-down” or over-simplification of a complex topic, something that can occur when it appears in magazines and TV shows.

An example might be solar panels: it would be wonderful to run your garden pond pump, shed, or garden office from solar panels – no cables to the house to bury, a good eco-friendly solution. But you have to balance that ideal with the cost of initial installation (probably greater than laying electric cables from the house), the limitations of supply and the increased maintenance that may be involved.  Having got your solar supply, you might be frustrated to find that you can’t charge your battery mower if you didn’t purchase a high enough generative capability.  This is typical of a fragmented approach to sustainability – it’s a start but not really useful just thinking of the power to your pond and ignoring that used within the house, or your car.

 

So where are we?  Standing on the threshold of an exciting new future, I would say.  Technology and information is available as never before, and hooking up to the IoT (internet of things) is great fun and useful too.  The brightness, however, is troubled by the looming stormclouds on the horizon and the knowledge that the societal cost of failure is high – and will be witnessed by ourselves but paid for by our children.

I do firmly believe that we can all make effective choices in what we do and in what we demand of the world, of business and our societies.  We have to make rational choices and sometimes temper our own personal indulgence.  Gas or electric patio heaters may be a nice luxury but the environmental damage is not justifiable.  Maybe a log burning fire basket is, provided we do other things to counter the carbon emissions, such as growing more bio-mass.  Extra woolly jumpers may simply be the best bet along with passive solar designed spaces!  Most issues simply come down to us making informed decisions and balancing personal ease with environmental sanity.

Remember, what sounds “eco” or fringe today, is going to be tomorrow’s norm.  Get out there, explore ideas and enjoy being the change!

Posted in Adaptive Planting, Climate Change, Design, design principles, Ecosystem Services, Edible Planting, Environment, Garden Design, green roof, Landscape Futurism, Planting Design, rain gardens, Smart Cities, Sustainability Tagged with: , , , , , , , , , ,

Curvilinear form in the garden
October 28th, 2018 by Mark Laurence

This was first published in 2009 and is referred to in Wikipedia.

 

Curves are an integral element of design and especially of landscape, since they make a connection to nature, which does not use linear form. Curvilinear lines are notoriously difficult to achieve as they are invariably of a freeform nature (ignoring geometric curves which are formed by arcs) and are subject to interpretation “by eye” of the person setting out the design. A few centimetres either way can however, throw a curve out, disrupting its harmonic flow.

As someone who designs a lot with organic, freeform curves, I have seen horrendous attempts at setting out curves by contractors who are nonetheless competent in every other respect. It’s not about ability so much as a certain way of seeing things. Perhaps drawing curves that work is the ultimate test and definition of a good designer, whilst the successful setting out of curves on the ground or in three dimensional form separates the artist from the builder.

It’s easy for me to say there are good and bad curves, quite another to explain and illustrate the difference. I have been wanting to write this article for a number of years, but so far put it off because of the difficulty in describing something so abstract. However, understanding curvilinear form is crucial, so I will try to explain something that is for me instinctive, rather than intellectual.

Let’s take as a starting point the difference between intellectual and instinctive design. Intellectually, you might form a series of circles and form a connecting line whilst instinctively, you might just take a pencil and draw a flowing line. The former is precise, controlled, intellectual, inorganic, whilst the latter is instinctive, free-flowing, emotional, organic. This is illustrated at here: need I say which is which?

The freeform line at top left shows two possibilities: the red line is smooth, flowing, but the green line flattens across the natural line of the curve. It is still a freeform line but it no longer feels fluid and loses its sense of movement. The variation from the red line might be only a matter of inches/centimetres but it is enough to disrupt the visual flow. To make matters more complicated, there is seldom just one exact freeform line that is perfect for the situation: in the drawing below left, all of the different lines will do the same job. What determines the correct one is likely to be the relationship of it to other nearby elements. Perhaps the most common mistake is to use too many tight reverse curves - to put in too many “squiggles”, in other words. On the whole, reverse freeform curves should not be too severe or exaggerated. real-life application Let's look at how a predefined space determined the use of curvilinear form. The example at right is (part of) a beach garden I designed a few years ago. The yellow area is the boundary wall - a massive concrete sea defense wall 700mm thick. The kinks and angles in this wall left a space that provided no internal parallels and could only be fully resolved using curvilinear form. The area adjoining this (not shown) was linear in format, as the space there invited. Running all the way along the inside of this boundary wall was a seat, again of massive concrete. This needed breaking up with the introduction of planting beds, leaving small sections of seat in between. The red line represents the nearest linear form that could have been used but you can see that what it describes is naturally curvilinear in nature (the green line). Don't forget that all curves are made up of straight lines (curvi-linear)! The design uses freeform lines to reflect the boundary wall and a spiral acts as a beginning, or end, at the point where most sitting out occurs. This is what I call a “still point”, whilst the main flow of the paving, leading to the adjacent garden, I call a “line of movement”. I do not believe that this area could have been resolved so well using linear means. The main point to note, however, it that the lines had to be freeform: geometrically derived curves would not have worked, although the contractor would have preferred them! I had to assist in the setting out, but once done, a superb job of construction was carried out. The walls were rendered with a specially textured cement based render, which was ideal for the tough coastal conditions.

c

The left hand curve would be preferred by any contractor setting out a garden: provided he gets the centre points in the right place, the rest is simple. the right hand curve requires personal judgment of eye; it is subjective and so much harder to translate from paper onto the ground.

The right hand curve is alive; it has rhythm, flow, it feels right. The other curve simply jars the eye, it is dead, with no movement.

It is true, however, that not every freeform curve is successful. In nature, animals (and Man) move in curved paths, plants follow curved movements, water flows in spiral vertical pathways. All these have a natural rhythm, and for our freeform line to succeed, it must do likewise.

A centred line running through the curves with offset measurements is the best way to translate this from paper but it is still easy to get this wrong, in the manner illustrated below.

 

Curvilinear form - right and wrong

Curvilinear form – right and wrong

curvilinear form - variations of line

curvilinear form – variations of line

The freeform line at top left shows two possibilities: the red line is smooth, flowing, but the green line flattens across the natural line of the curve. It is still a freeform line but it no longer feels fluid and loses its sense of movement. The variation from the red line might be only a matter of inches/centimetres but it is enough to disrupt the visual flow.

To make matters more complicated, there is seldom just one exact freeform line that is perfect for the situation: in the drawing below left, all of the different lines will do the same job. What determines the correct one is likely to be the relationship of it to other nearby elements. Perhaps the most common mistake is to use too many tight reverse curves – to put in too many “squiggles”, in other words. On the whole, reverse freeform curves should not be too severe or exaggerated.

real-life application

Plan showing a curvilinear setout

Plan showing a curvilinear setout

Let’s look at how a predefined space determined the use of curvilinear form.

The example at right is (part of) a beach garden I designed a some years ago. The yellow area is the boundary wall – a massive concrete sea defense wall 700mm thick. The kinks and angles in this wall left a space that provided no internal parallels and could only be fully resolved using curvilinear form. The area adjoining this (not shown) was linear in format, as the space there invited.

Running all the way along the inside of this boundary wall was a seat, again of massive concrete. This needed breaking up with the introduction of planting beds, leaving small sections of seat in between. The red line represents the nearest linear form that could have been used but you can see that what it describes is naturally curvilinear in nature (the green line). Don’t forget that all curves are made up of straight lines (curvi-linear)!

The design uses freeform lines to reflect the boundary wall and a spiral acts as a beginning, or end, at the point where most sitting out occurs. This is what I call a “still point”, whilst the main flow of the paving, leading to the adjacent garden, I call a “line of movement”.

I do not believe that this area could have been resolved so well using linear means. The main point to note, however, it that the lines had to be freeform: geometrically derived curves would not have worked, although the contractor would have preferred them! I had to assist in the setting out, but once done, a superb job of construction was carried out. The walls were rendered with a specially textured cement based render, which was ideal for the tough coastal conditions.

dealing with curvilinear form will always be more problematic than linear, or than curves set out using radii. The rewards are however, subtle and infinitely powerful if you get it right.

Posted in Design, design principles, Garden Design, landscapes, Urban Landscapes Tagged with: , , , , ,