Category: rain gardens

A natural water garden. The stream has built in biofilters to cleanse the water
January 21st, 2019 by Mark Laurence

Water in its purest form is the most simple of compounds – two atoms of hydrogen to one of oxygen – yet it is possibly one of the least understood “elements” on this planet. Strange, when it covers 70% of the globe and our bodies are 70% water. We take it for granted now, when once we considered it sacred. There is little appreciation of water; we no longer walk to the well, there is no effort involved and seemingly no end to its availability – except there is, but that’s not what this article is about.

I want to try and inspire a deeper appreciation of this element (not used to describe its chemical properties, for it is, as stated above, a compound), we need to reconnect with it as the source of life and spirit. I’ve worked with water for many years, building ponds and experimenting with biofilters and natural cleansing methods. I work intuitively, not scientifically and am the first to admit to large gaps in my knowledge, with a path of learning ahead of me that still looks impossibly steep! Yet the more you explore the qualities of water, the more you get drawn in: the secret of life itself lies in there. To that end, I have recently gone back to building new water features and greywater systems myself, for there is no substitution for hands-on experience and observation.

That water has properties “beyond the obvious” is a no-brainer – you can observe many of these for yourself. Understanding what exactly they are, how they are generated or destroyed, and just how far they go, is another matter altogether. You cannot investigate water for long without coming across the name of “Viktor Schauberger” an Austrian forester who investigated/discovered/rediscovered the more mystical properties of water during the first half of the 20th centaury.

spiral movements in water
spiral motion in water

So where do we begin, on a journey to a greater understanding of water? That’s difficult, but let’s start with what we can see: the way that water moves. Our mathematical minds tell us that the quickest way from A to B is in a straight line, but water doesn’t move like that, even when it could (in fact, nothing in nature does). Water moves in a never-ending series of spirals and vortices. Why? because that way water is energised; it generates or attracts minute electrical charges and controls it’s temperature, moving as close to the optimum of 4° C, when it is at its most dense (it expands either side of this point). This vortical movement causes the winding motion that we see in rivers once they reach the valley bottoms and plains, and the eddies and swirls you can plainly see in any moving body of water.

Vortical movement is centripetal, rather than centrifugal. It uses the force of implosion, rather than explosion. This form of movement gathers force and energy, rather than dissipating it outwards. Straight away this seems odd to us, for we are used to a science and technology based solely on the force of the centrifugal, explosive, dissipative; which inevitably must lead to loss and entropy. That Nature uses a different form of energy seems unreasonable to the scientific mind. It has been said that there is endless energy that can be captured from the movement of water (not from hydro-electric use) and if we could efficiently split water into oxygen and hydrogen by electrolysis then we could capture energy with water as the only emissions; but I do know that the way that water moves is strongly bound up with its health, and so the health of all life, and that is an area that interests me greatly.

Schauberger states that water tries to maintain itself at its greatest density of 4°C; then it has greatest energy and the water is at its most “enlivened” state. The problem with this is that it is difficult to measure or assess by conventional scientific means; this does not mean, however, that it is cannot be true. What we can say, however, is that water in its most natural state is the most healthy, and so at its best for both ourselves and the environment.

vortex in water
Water naturally moves in vortical spirals

Water may also carries memory, which accounts for whether it is in an “enlivened” state or not. In homeopathy, a benign substance is diluted to the point where it is chemically nonexistent, but potentially very active, and this is based upon the latent memory of water. This is also true of pollutants, whose influence can still be there even once the source has been removed. Fortunately, water will self-heal if only allowed to move in its natural rhythms. The design of Flowforms is one response to this, allowing water to regain it’s own energizing movement, and other devices, such as spiralled copper coils and units containing pre-energised water are all said to effect and energise water that flows past them. I have no particular view about this, but then, I haven’t done any tests on such devises and of course, knowing how to measure potential results is always the problem. In pond ecosystems, health can be largely determined through observation and I prefer this approach, where the results of alteration can be seen in biological response.

There are a number of issues I have experimented with at times: enhancing the natural rhythms of water movement, enhancing biological activity in breaking down pollutants, and incorporating ornamental pond systems with purification of household greywater discharge, rainwater harvesting and garden irrigation. All these things require biological understanding and observation but to my mind, they most of all require an open mind and a sense of respect, an acknowledgement that water is in fact precious and scared.

I live in an area surrounded by intensive agriculture, which extracts groundwater to irrigate vast monocultures of salad crops. This is the worst kind of abuse of water, treating it as an inexhaustible utility, to pollute with herbicides, insecticides and fertiliser runoff. Mankind’s ignorance and lack of respect for the most fundamental and vital element on this planet can only lead to exhaustion, depletion and pollution on such a scale that the very existence of all life is put under threat. We need to look for the highest potential of life, not the lowest common denominator. Time to get critical in our thinking, and get connected back to deeper understandings.

The most exciting thing is that understanding water truly can reveal the secrets of life. Through appreciating this simplest, yet most profound element, I believe that humankind can come to a greater appreciation of himself, and his place in the Universe.

All for a cupful of water.


First published in 2007

Posted in Natural Landscapes, rain gardens, Water Gardens Tagged with: , , , , ,

November 2nd, 2018 by Mark Laurence

This article was first published in 2007 and has been updated 2018.

Future gardens will be an integral part of a living bio-system that is part house, part garden, an energy conserving and production environment.  It will also be a resource for water retention and cleansing, food production area, biomass and environmental haven. Above all, it must continue to be a sanctuary for the soul and from the world at large.

Why do I say this?  We cannot consider the future of gardens without accounting for climate change, which is now having a tangible impact on us all. The 2018 IPCC report says we have 12 years left before things reach the point of no return.  Whilst there is less talk now about global oil reserves peaking and that energy will be in increasingly short supply, it is still true that we have a long way to go before we have a fully renewable clean energy supply chain.  Whatever the outcome, big changes are on the way.

So when we look to the future of our gardens, it’s not so much a matter of what style or vogue will be popular, for such things come and go and in this context are not particularly relevant.  You might imagine it is a case of asking what will our climate be like and how will gardens adapt.  Yet to talk only of adapting plants to suit the changing conditions is actually to miss the main opportunity for our gardens to become part of the solution to global warming and perhaps, even a core part of our individual – and so collective – survival.

House-garden water capture, cleansing and re-use system

House-garden water capture, cleansing and re-use schematic.

That might sound ridiculous in the face of such monumental problems but I don’t think so.  If we all decided to make sure that in our personal lives, we were “carbon neutral” (or as close as possible) then energy demands and pollution from domestic use would drop considerably.  At a rough estimate, gardens in the UK occupy about 4500 km2 of land area (Davies
et al. 2009), mostly in urban and suburban areas.  This makes them a precious resource and opportunity for change on a big scale.

The first thing we have to do is start looking at our environment as a living bio-system; in this case, the house and garden, with its connections to the wider world (air, earth, wind, rain, food, materials, waste, energy, communications).  Think of the garden as one cell in a big organism. Almost all the elements this cell needs to survive are coming from outside, beyond its sphere of influence.  Yet the way that cell is constructed, used and connected to its immediate surrounds (garden) could, if designed correctly, reduce its dependency on external manmade systems. To decrease those we must increase our connectivity with natural systems, namely the sun, wind  and rain.  To put it more directly, with have to reduce to a minimum the inputs and outputs of our homes.

A fedge (fence-hedge) uses biomass grown in the garden to create new boundaries. good for wildlife

A fedge (fence-hedge) uses biomass grown in the garden to create new boundaries. Good for wildlife and resource conservation.

Those items which we cannot produce internally need to be sourced from outside as close to us as possible. Therefore neighbourhood and regional systems need strengthening to minimise production/transport costs. This is particularly true and desirable for food products, but also building materials etc. For that reason, even if we manage to live off-grid – the ultimate, but extreme, conclusion to this line of thought – we cannot do it all alone and live in splendid isolation, nor would most of us want to. Many bio-systems will only work efficiently when connected together to give sufficient inputs to allow them to function properly (for example, reed-bed sewerage systems). Local community-generated bio-systems are essential to a sustainable future.

The main areas which the outside garden spaces could deal with are:

  • Passive solar gain (microclimates)
  • Water saving and (grey water) cleansing
  • Waste recycling (composting)
  • Energy production/conservation
  • Increasing site biomass
  • Food production
  • Biophilic nurturing
  • Nature conservation/biodiversity

You may think this all sounds very philanthropic, but where is the incentive to expend all this time and money “greening up” our homes and gardens?  Some of the incentive will be economic; for example metered water users already consume about 15% less water than unmetered and government will gradually introduce a number of Carrot and Stick measures.  But as cost of pollution will have to be met by industry and so, by consumers, simple economics means that inevitably everything will get more expensive.  For many people, I suspect that having a lifestyle that gives independence and doesn’t add to pollution will become increasingly desirable, as we all witness first or second-hand the effects of climate change.  Whilst we all see the horrors of hurricanes and droughts in distant lands, at home (for me, the UK) we see increasingly severe flooding etc. right on our own doorstep.  Less dependency on outside systems will give increased sense of security in an uncertain world.

In all of this, beauty and relaxation will be paramount, so gardens will still fulfil this most traditional and personal of roles, giving us joy, relaxation and sanctuary.  For example, looking at a beautiful water system of rills and planted gravel filterbeds is made all the more exciting by knowing it has a useful function and is saving resources.

A rain garden which captures roof-water and allows it to infiltrate the ground

A rain garden which captures roof-water and allows it to infiltrate the ground

For these principles to be taken up by the average garden-owner and made successful, we must resolve two conflicting issues: the subject needs to be driven by a sense of fun, adventure and positive aspiration to really make a difference and yet we must also avoid the “dumbing-down” or over-simplification of a complex topic, something that can occur when it appears in magazines and TV shows.

An example might be solar panels: it would be wonderful to run your garden pond pump, shed, or garden office from solar panels – no cables to the house to bury, a good eco-friendly solution. But you have to balance that ideal with the cost of initial installation (probably greater than laying electric cables from the house), the limitations of supply and the increased maintenance that may be involved.  Having got your solar supply, you might be frustrated to find that you can’t charge your battery mower if you didn’t purchase a high enough generative capability.  This is typical of a fragmented approach to sustainability – it’s a start but not really useful just thinking of the power to your pond and ignoring that used within the house, or your car.

 

So where are we?  Standing on the threshold of an exciting new future, I would say.  Technology and information is available as never before, and hooking up to the IoT (internet of things) is great fun and useful too.  The brightness, however, is troubled by the looming stormclouds on the horizon and the knowledge that the societal cost of failure is high – and will be witnessed by ourselves but paid for by our children.

I do firmly believe that we can all make effective choices in what we do and in what we demand of the world, of business and our societies.  We have to make rational choices and sometimes temper our own personal indulgence.  Gas or electric patio heaters may be a nice luxury but the environmental damage is not justifiable.  Maybe a log burning fire basket is, provided we do other things to counter the carbon emissions, such as growing more bio-mass.  Extra woolly jumpers may simply be the best bet along with passive solar designed spaces!  Most issues simply come down to us making informed decisions and balancing personal ease with environmental sanity.

Remember, what sounds “eco” or fringe today, is going to be tomorrow’s norm.  Get out there, explore ideas and enjoy being the change!

Posted in Adaptive Planting, Climate Change, Design, design principles, Ecosystem Services, Edible Planting, Environment, Garden Design, green roof, Landscape Futurism, Planting Design, rain gardens, Smart Cities, Sustainability Tagged with: , , , , , , , , , ,